OPTICROSS™ 18 & 35

Peripheral Imaging Catheters

Advanced IVUS Peripheral Imaging Solutions

CASE COLLECTION

A NEW depth of **insight**

A NEW range of **flexibility**

A NEW level of clarity

Advanced IVUS Peripheral Imaging Solutions | Case Collection

\bigoplus	Acute left subclavian arterial occlusion – thoracic outlet syndrome Mr Taha Khan	>
\bigoplus	Lower-limb claudication due to iliac atherosclerosis Mr Taha Khan	>
\bigoplus	Lower-limb claudication due to aorto-iliac disease Mr Taha Khan	>
\bigoplus	Rutherford IV left, SFA occlusion, recanalisation Dr Arun Kumarasamy	>
\bigoplus	Rutherford II left, long ATA, Afib, ATP occlusions, JetStream™ 1.6mm Dr Arun Kumarasamy	>
\bigoplus	Rutherford IV both legs, left tibiofibular tract stenosis Dr Arun Kumarasamy	>
\bigoplus	Rutherford IV, long SFA occlusion (left) Dr Arun Kumarasamy	>
\bigoplus	Rutherford IV ruled out dissection or restenosis after recanalisation Dr Arun Kumarasamy	>
\bigoplus	Post-thrombotic syndrome resulting in tissue loss Mr Taha Khan	>
\bigoplus	Acute right iliofemoral deep vein thrombosis Mr Taha Khan	>
\bigoplus	Bilateral lower-limb post-thrombotic syndrome due to iliocaval disease Mr Taha Khan	>
\bigoplus	Nutcracker Syndrome Dr Rutger Brans	>

Mr Taha Khan
Consultant Vascular Surgeon,
Guy's and St Thomas' NHS
Foundation Trust, London, UK

Dr Arun Kumarasamy Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

Dr Rutger BransInterventional Radiologist,
Maastricht University Medical Center,
Maastricht, The Netherlands

Results from case studies are not necessarily predictive of results in other cases. Results in other cases may vary.

A New Depth of **Insight**. A New Level of **Clarity**.

ATA: Anterior tibial artery Afib: Atrial fibrillation ATP: Arteria tibialis posterior CVD: Chronic venous disease

IVUS: Intra-vascular Ultrasound PAD: Peripheral arterial disease SFA: Superficial femoral artery

Acute left subclavian arterial occlusion - thoracic outlet syndrome

Mr Taha Khan, Consultant Vascular & Endovascular Surgeon, Guy's and St Thomas' NHS Foundation Trust, London, UK

PRESENTATION VIEW IMAGING >

- 52-year-old male right-handed baker
- No previous illness and no regular medication
- Five-day history of left upper-limb forearm discomfort and fatigue
- On examination:
- Absence of left upper-limb pulses
- Pallor
- Sensation intact (power 4/5)

TREATMENT

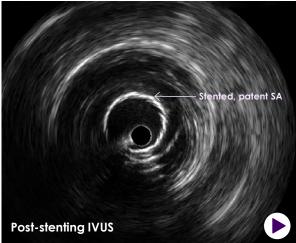
- The morning after admission, operative intervention involving:
 - Left 1st rib resection
 - Left brachial embolectomy
- Left subclavian and upper-limb angiogram
- Left subclavian and upper-limb IVUS
- Left subclavian artery stenting and angioplasty
- IVUS enabled:
- Recognition of residual subclavian artery stenosis and thrombus
- Identification of the segment of the subclavian artery requiring treatment with a stent

OUTCOME VIEW IMAGING >

 Left upper-limb pulse palpable immediately after the procedure

CONCLUSION

 IVUS enabled early identification of residual intraarterial disease which may have been ambiguous on DSA alone


RATIONALE FOR IVUS

- IVUS in combination with angiography has greater sensitivity for **identifying residual disease**
- In this case, IVUS demonstrated residual stenosis and thrombosis despite surgical intervention and therefore **supported the need for subclavian artery stenting**

ENLARGE IVUS IMAGES >

Acute left subclavian arterial occlusion – thoracic outlet syndrome

Mr Taha Khan, Consultant Vascular & Endovascular Surgeon, Guy's and St Thomas' NHS Foundation Trust, London, UK

PRESENTATION Clavicle **Axillary** artery Occluded SA Proximal SA-First rib Aorta

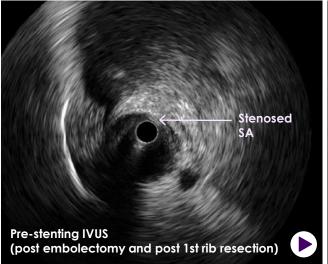
Acute left subclavian arterial occlusion – thoracic outlet syndrome

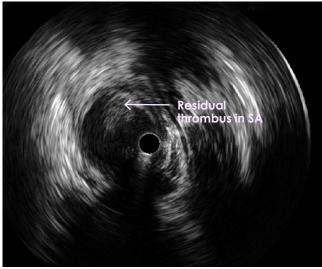
Mr Taha Khan, Consultant Vascular & Endovascular Surgeon, Guy's and St Thomas' NHS Foundation Trust, London, UK

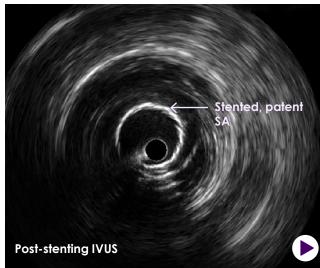
OUTCOME

Post balloon-expandable endoprosthesis stent 8mm x 5mm

Acute left subclavian arterial occlusion – thoracic outlet syndrome







Mr Taha Khan, Consultant Vascular & Endovascular Surgeon, Guy's and St Thomas' NHS Foundation Trust, London, UK

IVUS IMAGES

Mr Taha Khan, Consultant Vascular & Endovascular Surgeon, Guy's and St Thomas' NHS Foundation Trust, London, UK

PRESENTATION VIEW IMAGING >

- 80-year-old male
- Bilateral lower-limb claudication (left worse than right)
- Medical history:
 - Current smoker
- Coronary artery bypass 2016
- Right external iliac and superficial femoral artery angioplasty 2011
- Known 5.1 cm asymptomatic abdominal aortic aneurysm (AAA)
- Drug history:
 - Aspirin Lansoprazole
 - Atorvastatin Bisoprolol
 - Ramipril

TREATMENT

Therapeutic dilemma:

- **Option 1:** Treat peripheral arterial disease (PAD) alone (left CFA endarterectomy and left Iliac stenting)
- Option 2: Treat PAD and aortic aneurysm (endovascular repair)
- **Treatment of choice:** Left CFA endarterectomy and left iliac stenting, chosen for two reasons:
 - 1. AAA was sub-threshold
 - 2. Patient had significant comorbidities as a result of PAD

OUTCOME VIEW IMAGING >

- Palpable left pedal pulses
- Claudication resolved
- Patient is now able to walk for 0.5 mile (0.8 km) before his mobility is restricted by fatigue
- Atorvastatin continued
- Secondary prevention with dual antiplatelet therapy for six weeks and then Clopidoarel 75mg once a day

CONCLUSION

 IVUS enabled accurate recognition of the diseased left iliac segments despite challenges with DSA

ENLARGE IVUS IMAGES > Stenosed EIA Initial pre-treatment IVUS

RATIONALE FOR IVUS

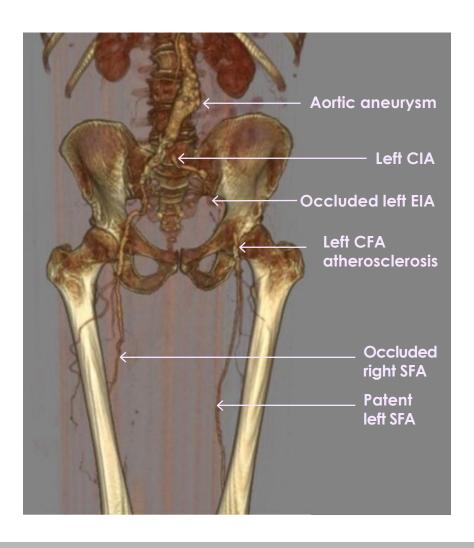
- Recognition of residual stenosis or thrombosis with greater sensitivity when used in conjunction with DSA angiography
- Accurate identification of the diseased arterial segments, even in the absence of flow
- Assessment of individual vessels without the need for changing orientation of the image intensifier

AAA: Abdominal aortic aneurysm CIA: Common iliac artery

CFA: Common femoral artery EIA: External iliac artery

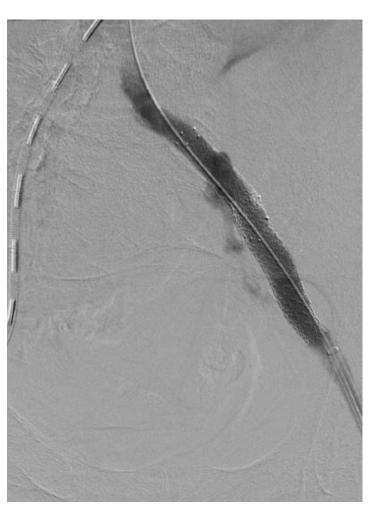
DSA: Digital Subtraction Angiography IVUS: Intravascular ultrasound

SFA: Superficial femoral artery



Mr Taha Khan, Consultant Vascular & Endovascular Surgeon, Guy's and St Thomas' NHS Foundation Trust, London, UK

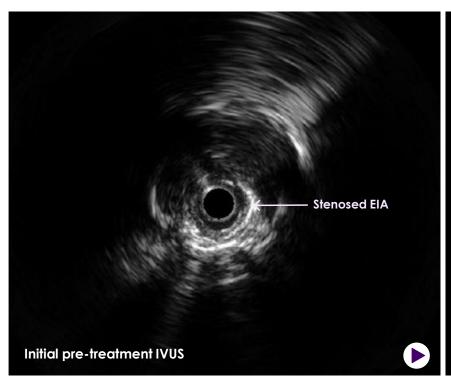
PRESENTATION



Mr Taha Khan, Consultant Vascular & Endovascular Surgeon, Guy's and St Thomas' NHS Foundation Trust, London, UK

OUTCOME

Stent graft 8mm x 57mm



Mr Taha Khan, Consultant Vascular & Endovascular Surgeon, Guy's and St Thomas' NHS Foundation Trust, London, UK

IVUS IMAGES

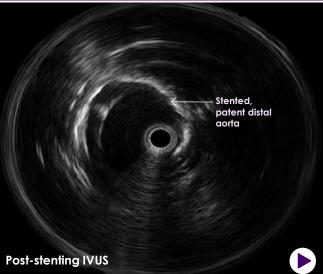
Mr Taha Khan, Consultant Vascular & Endovascular Surgeon, Guy's and St Thomas' NHS Foundation Trust, London, UK

PRESENTATION VIEW IMAGING >

- 57-year-old lady who works as a cleaner
- Bilateral lower-limb claudication (distance: 10m)
- Medical history:
- Current smoker
- Hypertension
- Diabetes
- Drug history:
- Atorvastatin
- No infra-inguinal pulses were palpable
- CTA showed severe stenosis of the aortic bifurcation with severe right CIA stenosis and left CIA occlusion. No further run-off disease

TREATMENT

- Medical management: Aspirin commenced at 75mg once a day
- Suitable surgical/endovascular options:
 - Aorto bi-iliac bypass
 - -CFRAB
- Risks vs benefit discussion with the patient led to the decision to proceed with CERAB


OUTCOME VIEW IMAGING >

- Palpable bilateral pedal pulses
- Claudication resolved
- No significant limitation in mobility and patient returned to full-time work
- Atorvastatin continued
- Secondary prevention with dual antiplatelet therapy for six weeks and then Clopidoarel 75mg once a day

CONCLUSION

- IVUS enabled accurate recognition of the diseased arterial segments despite challenges with DSA
- Furthermore, IVUS demonstrated a residual dissection flap not seen on DSA

ENLARGE IVUS IMAGES > ; Right Iliac; Evaluation Frame 1321 Controlateral wire aorta Pre-stenting IVUS

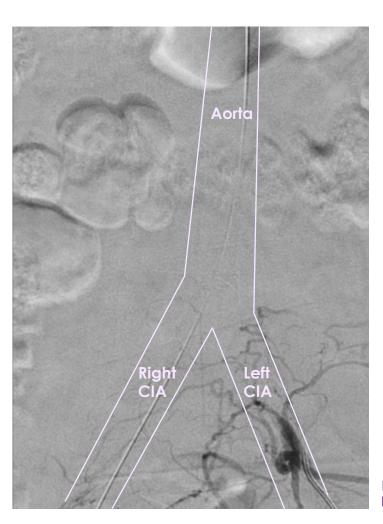
RATIONALE FOR IVUS

- Greater sensitivity for identifying residual arterial disease when used in conjunction with DSA
- Accurate identification of the diseased arterial segments, even in the absence of flow
- Precise assessment of potential in-stent disease or external sent compression

CERAB: Covered endovascular reconstruction of the aortic bifurcation CIA: Common iliac artery

CTA: Computed tomography angiogram DSA: Digital subtraction angiography

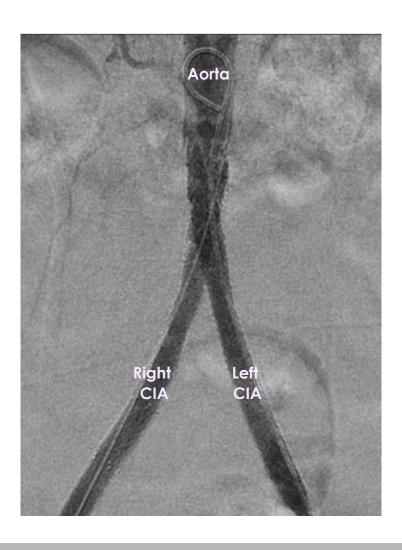
IVUS: Intravascular ultrasound



Mr Taha Khan, Consultant Vascular & Endovascular Surgeon, Guy's and St Thomas' NHS Foundation Trust, London, UK

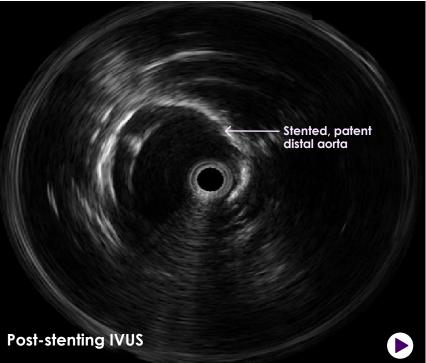
PRESENTATION

Lines indicate expected location of vessels



Mr Taha Khan, Consultant Vascular & Endovascular Surgeon, Guy's and St Thomas' NHS Foundation Trust, London, UK

OUTCOME



Mr Taha Khan, Consultant Vascular & Endovascular Surgeon, Guy's and St Thomas' NHS Foundation Trust, London, UK

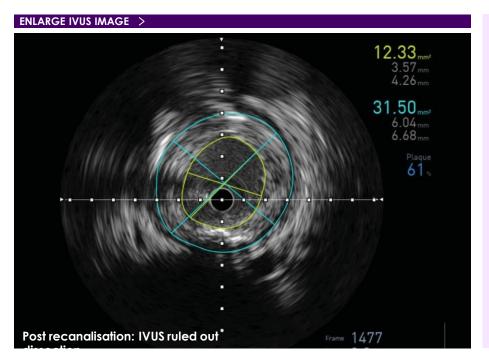
IVUS IMAGES

Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

PRESENTATION VIEW IMAGING >

- 55-year-old male, left SFA Occlusion
- Rutherford IV (ischaemic rest pain) left
- Medical history:
- Diabetes
- Arterial hypertension
- Hypercholesterolemia
- Adipositas
- Drug history:
- Aspirin 100mg 1-0-0
- Enalpril 10mg 1-0-0
- Clopidogrel 75mg 1-0-0Pantozol 40mg 1-0-0Atorvastatin 40mg 0-0-1

TREATMENT VIEW IMAGING >


- SFA recanalisation and atherectomy with JetStream™2.4mm/3.4mm
- SFA treatment with:
- 4mm x 80mm DEB
- 5mm x 80mm DEB
- 4mm x 200mm POBA
- IVUS revealed no dissection

OUTCOME VIEW IMAGING >

- SFA recanalisation with patent flow
- IVUS detected no residual stenosis, no dissection, no stent placement needed
- Improved Rutherford Category (IV → II)

CONCLUSION

IVUS ruled out dissection, no stent needed

RATIONALE FOR IVUS

- Greater sensitivity in terms of identifying residual stenosis when used in conjunction with DSA
- Accurate vessel sizing
- Accurate identification of dissections
- Assessment of individual vessels without the need for changing orientation of the image intensifier

DEB: Drug-eluting balloon DSA: Digital subtraction angiography IVUS: Intravascular ultrasound POBA: Plain old balloon angioplasty

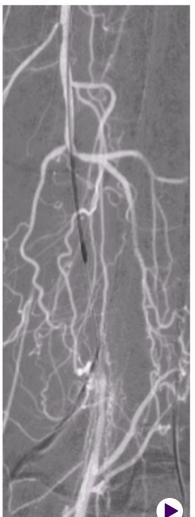
SFA: Superficial femoral artery

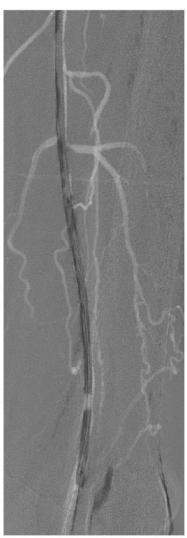
Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

PRESENTATION

DEB: Drug-eluting balloon DSA: Digital subtraction angiography IVUS: Intravascular ultrasound POBA: Plain old balloon angioplasty

SFA: Superficial femoral artery





Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

DIAGNOSIS / TREATMENT

Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

OUTCOME 1 2

IVUS: Intravascular ultrasound POBA: Plain old balloon angioplasty SFA: Superficial femoral artery

Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

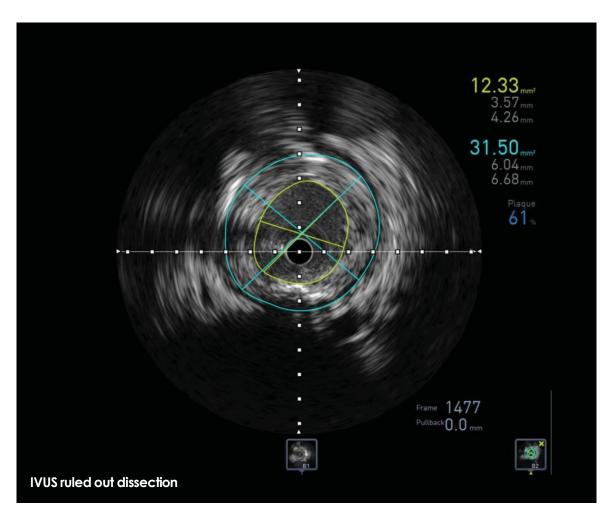
OUTCOME 1 2 SMART PERFUSION Kra Ansicht 2 Ansicht 1 Perfusionsbild Perfusionsbild LAO 8° KRAN 1° FD: 48 cm SID: 94 cm ■1 88 cm

Before recanalisation - arrival time

Ausgewählter Bereich 0.3s - 16.7s

Post recanalisation - arrival time

Serie 2 2021/08/18 13:10 Ausgewählter Bereich 0.3s - 12.0s



Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

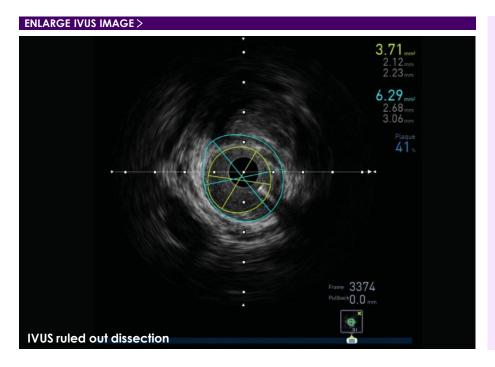
IVUS IMAGE POST RECANALISATION

Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

PRESENTATION VIEW IMAGING >

- 47-year-old male, left AFS
- Rutherford II (moderate claudication)
- Medical history:
 - Arterial hypertension
- Hypercholesterolemia
- Drug history:
- Aspirin 100mg 1-0-0
- Clopidogrel 75mg 1-0-0
- Atorvastatin 40mg 0-0-1

TREATMENT VIEW IMAGING >


- ATA recanalisation and atherectomy with JetStream™ 1.6mm
- ATA PTA with:
- -2.5mm x 150mm balloon
- -3.0mm x 150mm balloon
- IVUS revealed no dissection

OUTCOME VIEW IMAGING >

- ATA recanalisation with patent flow
- IVUS detected no residual stenosis, no dissection
- Improved Rutherford Category (II → I)

CONCLUSION

• IVUS ruled out dissection and residual stenosis/embolus

RATIONALE FOR IVUS

- Greater sensitivity in terms of identifying residual stenosis when used in conjunction with DSA
- Accurate vessel sizing
- Accurate identification of dissections
- Assessment of individual vessels without the need for changing the orientation of the image intensifier

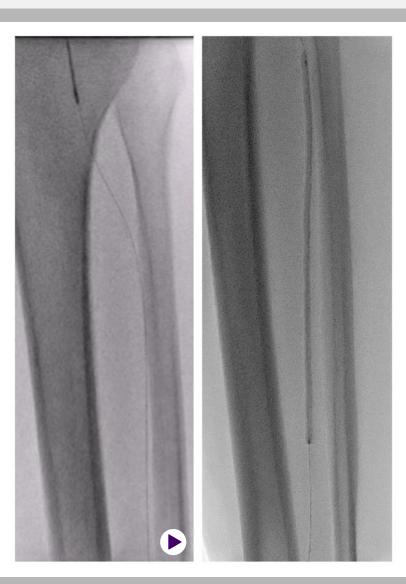
Afib: Atrial fibrillation AFS: Arterial fermoral stenosis ATA: Anterior tibial artery
ATP: Arteria tibialis posterior

DSA: Digital subtraction angiography IVUS: Intravascular ultrasound

PTA: Percutaneous transluminal angioplasty SFA: Superficial femoral artery

Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

PRESENTATION



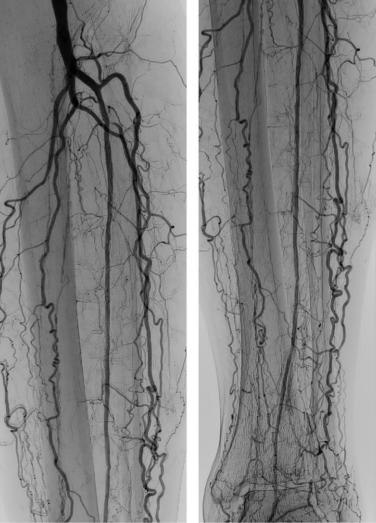
Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

DIAGNOSIS / TREATMENT

ATA: Anterior tibial artery
ATP: Arteria tibialis posterior

DSA: Digital subtraction angiography IVUS: Intravascular ultrasound

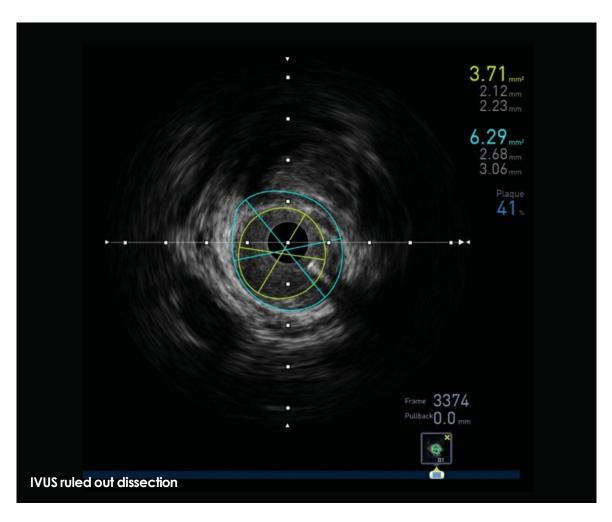
PTA: Percutaneous transluminal angioplasty SFA: Superficial femoral artery


Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

OUTCOME 1 2

Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

OUTCOME 1 2 SMART PERFUSION Ansicht 1 Ansicht 2 Perfusionsbild Perfusionsbild RAO 12° KRAN 1° FD: 48 cm SID: 101 cm RAO 22° KRAN 1° FD: 48 cm SID: 101 cm -1- 88 cm ■ 1 88 cm 2021/11/15 13:09 2021/11/15 15:02 Ausgewählter Bereich 0.3s - 12.3s Ausgewählter Bereich 0.3s -Before recanalisation - arrival time Post recanalisation - arrival time



Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

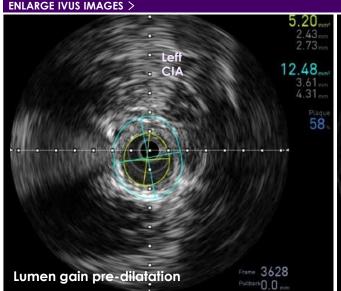
IVUS IMAGE POST RECANALISATION

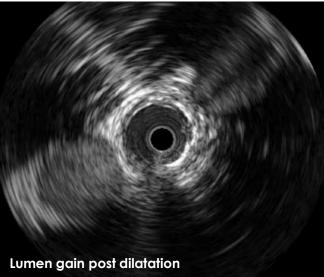
Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

PRESENTATION VIEW IMAGING >

- 80-year-old male, ischaemic multiple prior interventions
- Rutherford IV (ischaemic rest pain) on both sides
- Medical history:
 - Diabetes
 - Arterial hypertension
 - Rheumatoid arthrosis
- Drug history:
- Aspirin 100mg
- Lercanidipin 20mgRamipril HCT 5/25mg
- Eliquis 5mg
- Metformin 1000mg Bisoprolol 2.5mg
- Atorvastatin 80mg
- -Torasemid 10mg

TREATMENT VIEW IMAGING >


- Femoropopliteal treatment with:
 - -6mm x 80mm DEB
 - -6mm x 80mm DEB
 - -5mm x 80mm DEB
 - -4mm x 80mm DEB
- Artherectomy of the tibiofibular tract with JetStream™2.1mm/3.1mm
- PTA of tibiofibular tract using 2 balloons:
 - 3.0mm x 150mm
 - -3.5mm x 80mm
- On the basis of vessel sizing of the tibiofibular tract with IVUS, we performed a further dilatation using a 3.5mm x 150mm balloon


OUTCOME VIEW IMAGING >

- Improved outflow through tibiofibular tract and fibular artery
- Improved Rutherford Category (IV → II)

CONCLUSION

 IVUS delivered accurate vessel sizing and ruled out dissection

RATIONALE FOR IVUS

- Recognition of residual stenosis with greater sensitivity when used in conjunction with DSA angiography
- Accurate vessel sizing
- Accurate identification of dissections
- Assessment of individual vessels without the need for changing orientation of the image intensifier

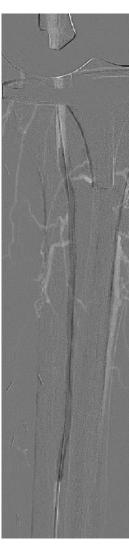
ATA: Anterior tibial artery DEB: Drug-eluting balloon

DSA: Digital subtraction angiography IVUS: Intravascular ultrasound

PTA: Percutaneous transluminal angioplasty

Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

PRESENTATION



Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

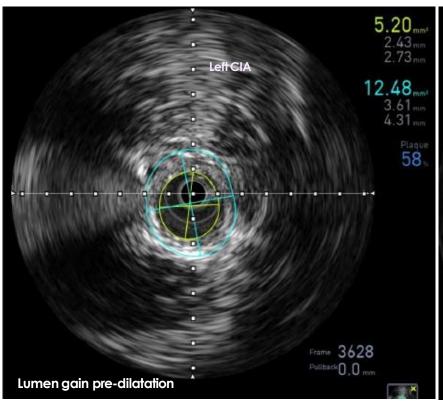
DIAGNOSIS / TREATMENT

Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

OUTCOME 1 2

Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

OUTCOME 1 2 SMART PERFUSION Ansicht 1 Ansicht 2 Perfusionshild Perfusionsbild S.D: 98 cm -1 90 cm uspewühlter Bereich 0.3s - 30.7 Before recanalisation - arrival time Post recanalisation - arrival time



Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

IVUS IMAGES

Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

PRESENTATION VIEW IMAGING >

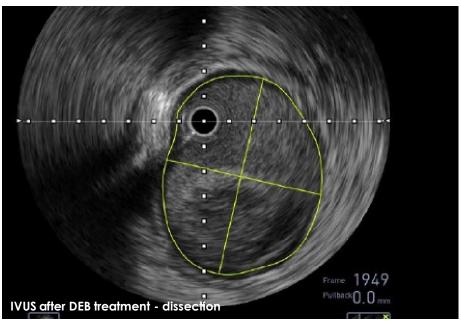
- 73-year-old male
- Rutherford IV (ischaemic rest pain) on both sides
- Medical history:
- Current smoker
- Hypertension
- -COPD
- Coronary artery disease
- Drug history:
- Aspirin
- Atorvastatin
- Ramipril
- Bisoprolol

TREATMENT VIEW IMAGING > **Long SFA Occlusion**

- Recanalisation SFA, JetStream™ 2.4mm/3.4mm, treatment:
 - -6mm x 80mm DEB
 - -5mm x 80mm DEB
 - -5mm x 80mm DFB -4mm x 80mm DFB

Therapeutic dilemma:

- Option 1: Stent
- Option 2: No stent
- **Decision:** Stent placement due to highgrade dissection detected on IVUS:
- -8mm x 100mm
- -8mm x 10mm


OUTCOME VIEW IMAGING >

- Palpable left pedal pulses
- Ischaemic rest pain resolved
- Improved walking distance
- Aspirin 100mg once a day continued
- Secondary prevention with Clopidogrel 75ma once a day for 6 weeks
- Improved Rutherford Category (IV → II)

CONCLUSION

• IVUS enabled accurate identification of high-grade dissection

ENLARGE IVUS IMAGE >

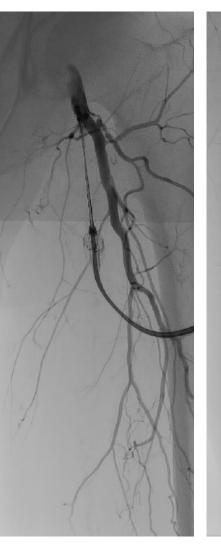
RATIONALE FOR IVUS

- Greater sensitivity in terms of identifying residual stenosis when used in conjunction with DSA
- Accurate vessel sizing
- Accurate identification of dissections
- Assessment of individual vessels without the need for changing orientation of the image intensifier

COPD: Chronic occlusive pulmonary disease Drug-eluting balloon

DSA: Digital subtraction angiography IVUS: Intravascular ultrasound

SFA: Superficial femoral artery



Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

PRESENTATION

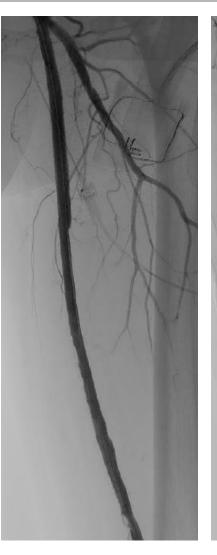
Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

DIAGNOSIS

COPD: Chronic occlusive pulmonary disease DEB: Drug-eluting balloon

DSA: Digital subtraction angiography IVUS: Intravascular ultrasound

SFA: Superficial femoral artery



Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

OUTCOME

Rutherford IV, long SFA occlusion (left)

Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

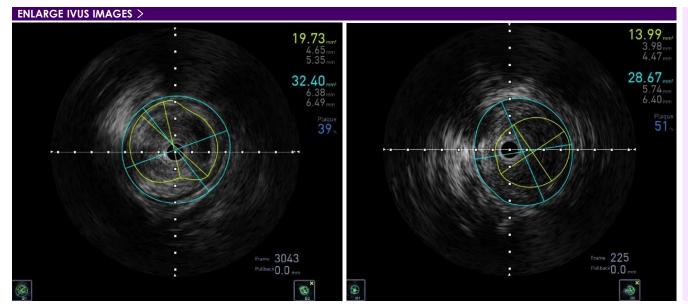
IVUS IMAGE

Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

PRESENTATION VIEW IMAGING >

- 79-year-old female, popliteal occlusion (acute onset)
- Rutherford V left, interdigital ulcera D2/D3
- Medical history:
 - Diabetes
- Arterial hypertension
- Arterial fibrillation
- -CVI
- Drug history:
- Xarelto 20mg 1-0-0
- Bisoprolol 5mg 1-0-1
- Ramipril 2.5mg ½-0-0

TREATMENT VIEW IMAGING >


- Recanalisation of the popliteal artery and Artherectomy with JetStream™2.4mm/3.4mm
- Treatment with 5mm x 80mm DEB
- IVUS revealed no dissection, no restenosis, no embolus – patent flow

OUTCOME VIEW IMAGING >

- Rutherford II after a couple of weeks, healed ulcera
- Patient is pain free
- Improved ABI

CONCLUSION

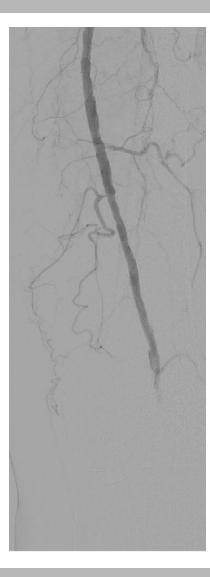
 IVUS delivered accurate vessel sizing and ruled out dissection and showed patent flow

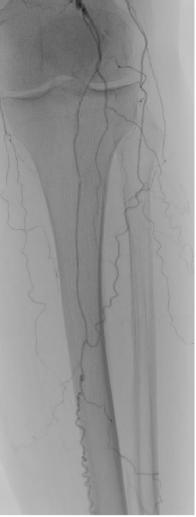
RATIONALE FOR IVUS

- Greater sensitivity in terms of identifying residual stenosis when used in conjunction with DSA
- Accurate vessel sizing
- Accurate identification of dissections
- Assessment of individual vessels without the need for changing orientation of the image intensifier

ABI: Ankle brachial index
CVI: Chronic venous insufficiency

DEB: Drug-eluting balloon
DSA: Digital subtraction angiography



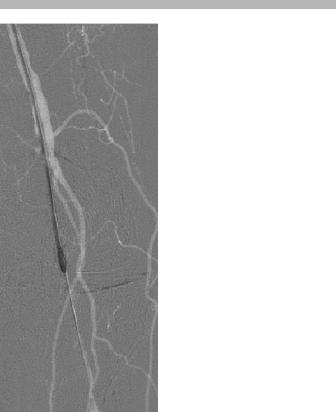


Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

PRESENTATION

ABI: Ankle brachial index CVI: Chronic venous insufficiency

DEB: Drug-eluting balloon
DSA: Digital subtraction angiography

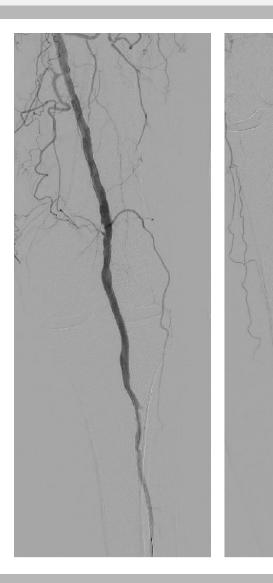


Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

DIAGNOSIS / TREATMENT

ABI: Ankle brachial index CVI: Chronic venous insufficiency

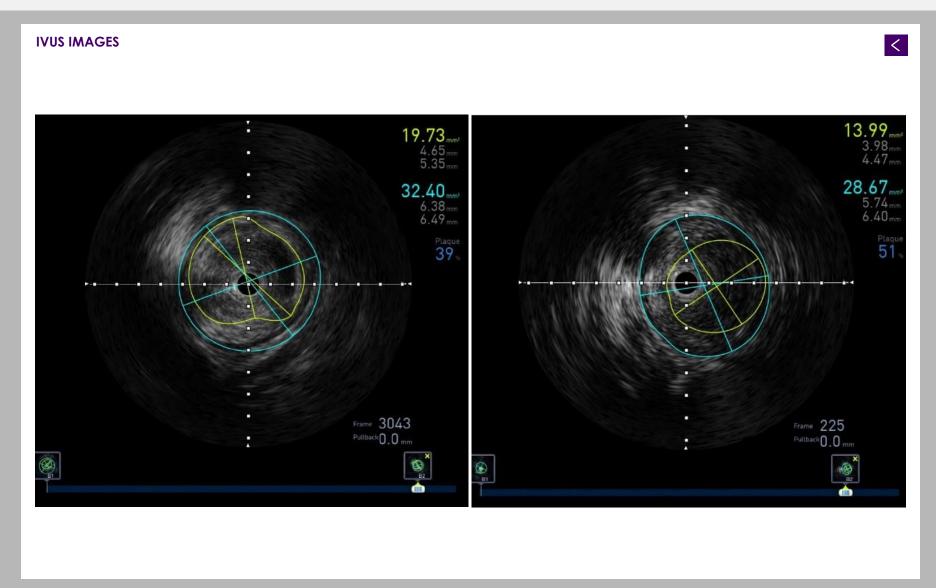
DEB: Drug-eluting balloon
DSA: Digital subtraction angiography



Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

OUTCOME

ABI: Ankle brachial index CVI: Chronic venous insufficiency


DEB: Drug-eluting balloon
DSA: Digital subtraction angiography

Arun Kumarasamy, Interventional Radiologist, Krankenhaus Sachsenhausen, Frankfurt, Germany

Mr Taha Khan, Consultant Vascular & Endovascular Surgeon, Guy's and St Thomas' NHS Foundation Trust, London, UK

PRESENTATION VIEW IMAGING >

- 48-year-old soldier who suffered a left lowerlimb gunshot wound in the Iraq war of 2003, resulting left iliofemoral DVT in 2003
- Presented in 2020 with left lower-limb postthrombotic syndrome (PTS): Tissue loss, haemosiderosis and lower-limb swelling
- Drug history:
 - Rivaroxaban
 - Omeprazole
- Pregabalin (for lower limb pain)
- Venous duplex:
- -Incomplete visualisation of CIV
- Patent but incompetent LSV, CFV, PFV, FV
- EIV occluded distally
- Magnetic resonance venogram:
- May-Thurner Syndrome, chronic CIV disease
- -Severe stenosis of the EIV
- Extensive superficial venous collaterals

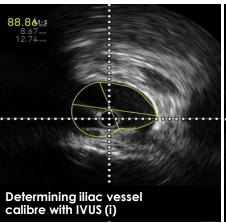
TREATMENT

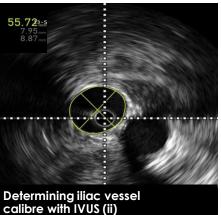
- Medical management with anticoagulation and compression therapy had failed to resolve persistent symptoms and ulceration
- Surgical option: Left iliofemoral deep venous stenting with RFA of the long saphenous vein

OUTCOME VIEW IMAGING >

- Improvement in left lower-limb swelling over the next week
- Lower-limb discomfort improved over a period of 2-3 weeks
- Ulceration healed after five weeks

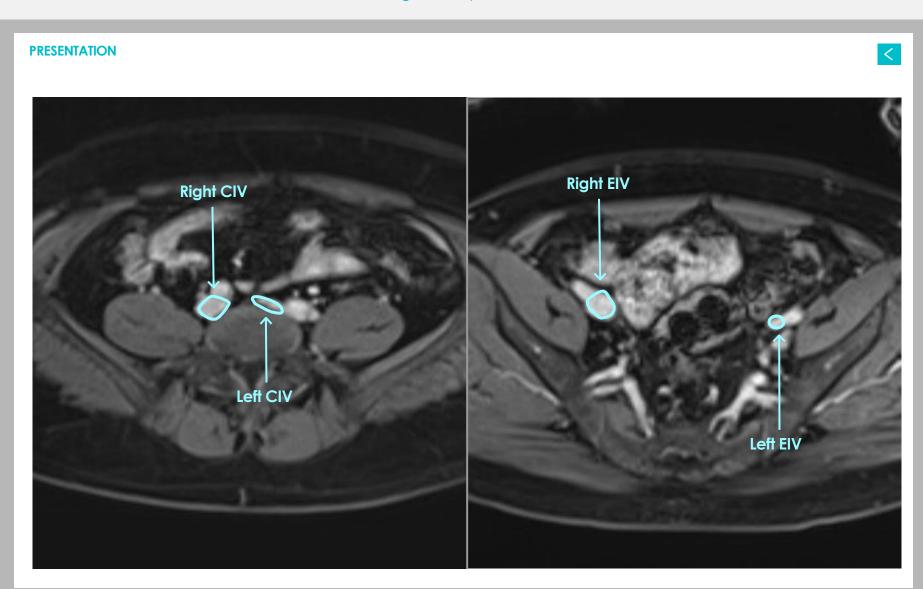
CONCLUSION


- Medical management provides symptom control but does not cure PTS
- IVUS enabled accurate recognition of the diseased left iliac segments despite challenges with DSV
- IVUS allowed precise assessment of both disease length and vessel calibre, thereby facilitating appropriate stent choice


RATIONALE FOR IVUS

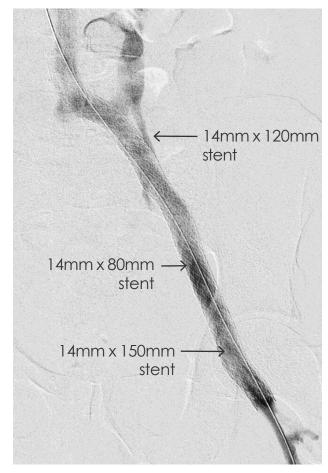
- Accurate identification of the diseased venous segments, even in the absence of flow
- Exact measurement of vessel calibre to guide stent choice
- Precise assessment of the length of deep venous disease
- Clear-cut demonstration of healthy deep veins and the location of the PFV

ENLARGE IVUS IMAGES >



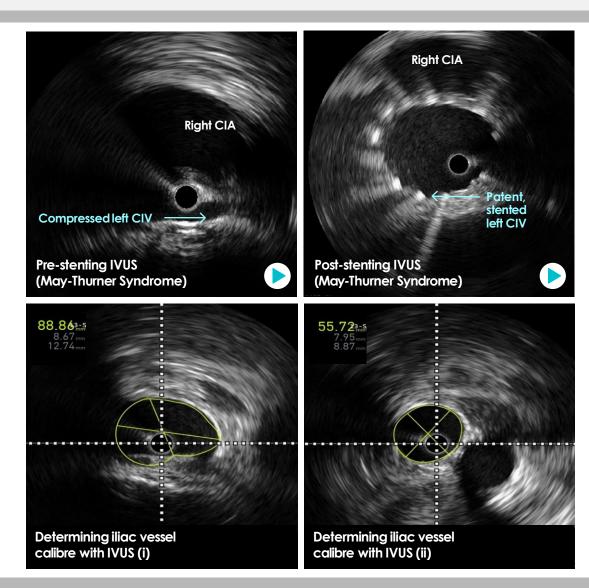
Mr Taha Khan, Consultant Vascular & Endovascular Surgeon, Guy's and St Thomas' NHS Foundation Trust, London, UK

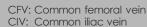
Mr Taha Khan, Consultant Vascular & Endovascular Surgeon, Guy's and St Thomas' NHS Foundation Trust, London, UK


OUTCOME

Pre-stenting venography

Post-stenting venography





Mr Taha Khan, Consultant Vascular & Endovascular Surgeon, Guy's and St Thomas' NHS Foundation Trust, London, UK

IVUS IMAGES

Mr Taha Khan, Consultant Vascular & Endovascular Surgeon, Guy's and St Thomas' NHS Foundation Trust, London, UK

PRESENTATION VIEW IMAGING >

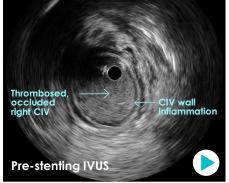
- 26-year-old female, five weeks post partum
- Three-day history of right lower-limb swelling with discomfort
- Right lower-limb venous congestion to the calf and swelling to the groin
- Medical history:
 - -Smoker
- No history of thrombophilia or previous miscarriage
- No regular medication
- Venous duplex:
- Right iliofemoral DVT with thrombus extending into FV and popliteal vein
- Patent PFV
- Computed Tomography Venogram (CTV)
- Right iliofemoral DVT
- No compression of the deep veins or features of malignancy

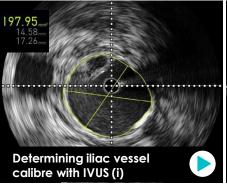
TREATMENT

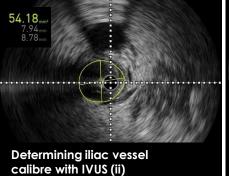
- Medical option: Anticoagulation and compression
- Surgical/endovenous option: thrombolysis with pharmacomechanical therapy (AngioJet[™]in this case) with venoplasty and deep venous stenting if required
- Risks vs benefit discussion with the patient led to the decision to proceed with endovenous intervention

OUTCOME VIEW IMAGING >

- Early resolution of venous congestion
- Improvement in swelling over 2-3 days
- Lower limb discomfort improved
- Patient was able to make a prompt return to enjoying time with her new-born infant


CONCLUSION


- Intervention for early thrombus resolution can reduce risk of future PTS
- IVUS enabled accurate identification of disease morphology
- IVUS allowed focussed delivery of thrombolytic agents, thereby reducing drug dose and improving thrombus resolution

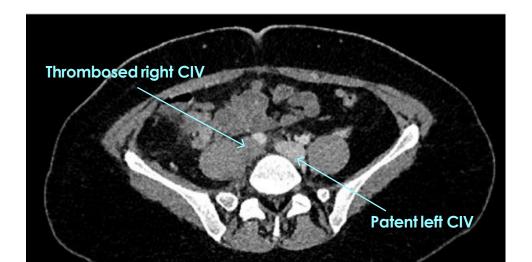

RATIONALE FOR IVUS


- Accurate identification of the disease morphology enables differentiation between acute thrombus and chronic disease
- Precise measurement of vessel calibre to guide stent choice
- Assessment of which specific deep veins are involved
- Exact demonstration of degree of thrombus resolution which facilitates targeted delivery of further thrombolysis if required

ENLARGE IVUS IMAGES >

CTA: Computed tomography angiogram DVT: Deep vein thrombosis

FV: Femoral vein
IVUS: Intravascular ultrasound



Mr Taha Khan, Consultant Vascular & Endovascular Surgeon, Guy's and St Thomas' NHS Foundation Trust, London, UK

PRESENTATION

Pre stenting (patient lying prone)

CTA: Computed tomography angiogram DVT: Deep vein thrombosis

FV: Femoral vein IVUS: Intravascular ultrasound

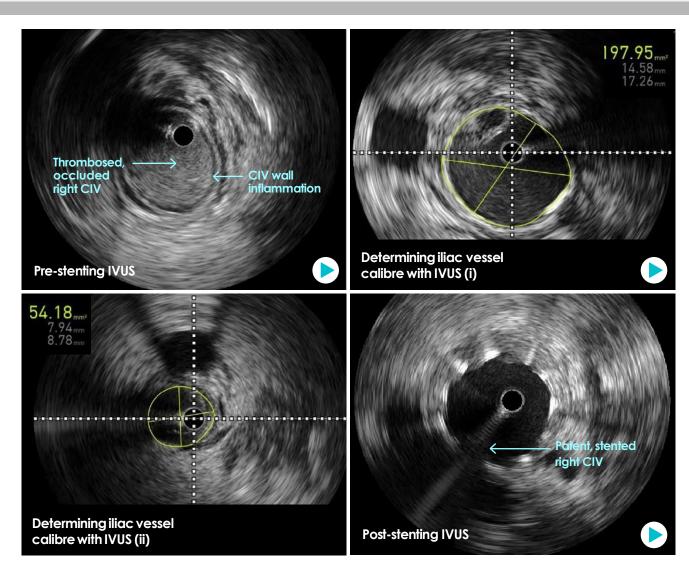
Mr Taha Khan, Consultant Vascular & Endovascular Surgeon, Guy's and St Thomas' NHS Foundation Trust, London, UK

OUTCOME

Post stenting (patient lying prone)

CTA: Computed tomography angiogram DVT: Deep vein thrombosis

FV: Femoral vein IVUS: Intravascular ultrasound



Mr Taha Khan, Consultant Vascular & Endovascular Surgeon, Guy's and St Thomas' NHS Foundation Trust, London, UK

IVUS IMAGES

FV: Femoral vein IVUS: Intravascular ultrasound

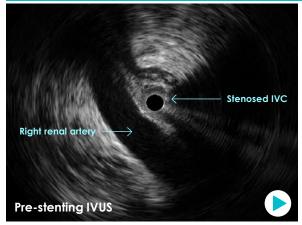
Mr Taha Khan, Consultant Vascular & Endovascular Surgeon, Guy's and St Thomas' NHS Foundation Trust, London, UK

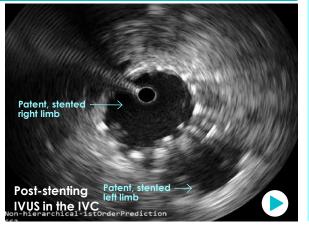
PRESENTATION VIEW IMAGING >

- 47-year-old female
- Four-year history of bilateral lower-limb swelling and pain
- Deterioration 4 months before presentation
- Bilateral lower-limb venous claudication
- Medical history:
- -Type 1 diabetes patient has an insulin pump
- Multiple episodes of DVTs over the past 11 years
- No history of thrombophilia
- Drug history:
- Apixaban
- Venous duplex:
- No flow in the infrarenal IVC or the bilateral iliofemoral systems
- Patent profunda femoris veins but stenotic femoral veins
- Computed tomography venogram (CTV)
- Hypoplastic infrarenal IVC and chronic occlusive disease of the bilateral iliofemoral venous systems

TREATMENT

- Medical option: Anticoagulation and compression (but patient has already tried this with very limited benefit)
- Surgical/endovenous option:
 IVC reconstruction and bilateral iliofemoral deep venous stenting
- Patient decided to proceed with endovenous intervention


OUTCOME VIEW IMAGING >


- Improvement in swelling over the next 2-3 weeks
- · Lower-limb discomfort improved
- Bilateral lower-limb venous claudication also resolved over the next month

CONCLUSION

- Medical management provides symptom control but does not cure PTS
- IVUS enabled accurate identification of the disease segments
- Clear demonstration of PFV to ensure accurate stenting to preserve inflow

ENLARGE IVUS IMAGES >

RATIONALE FOR IVUS

- Accurate identification of the diseased venous segments, even in the absence of flow
- Clear demonstration of the corresponding artery to ensure the correct anatomical path was followed
- Exact identification of the contralateral wire to confirm both the ipsilateral and contralateral wires are in the same fibrotic channel
- Precise measurement of vessel calibre and disease length to guide stent choice

CTA: Computed tomography angiogram DVT: Deep vein thrombosis

FV: Femoral vein IVUS: Intravascular ultrasound

Mr Taha Khan, Consultant Vascular & Endovascular Surgeon, Guy's and St Thomas' NHS Foundation Trust, London, UK

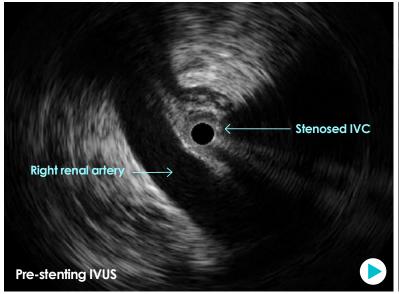
PRESENTATION

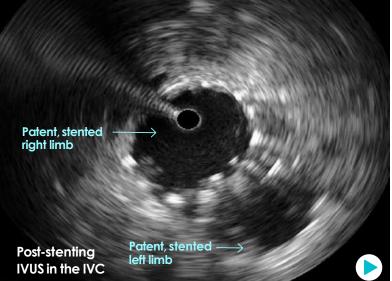
FV: Femoral vein IVUS: Intravascular ultrasound

Mr Taha Khan, Consultant Vascular & Endovascular Surgeon, Guy's and St Thomas' NHS Foundation Trust, London, UK

OUTCOME

FV: Femoral vein IVUS: Intravascular ultrasound





Mr Taha Khan, Consultant Vascular & Endovascular Surgeon, Guy's and St Thomas' NHS Foundation Trust, London, UK

IVUS IMAGES

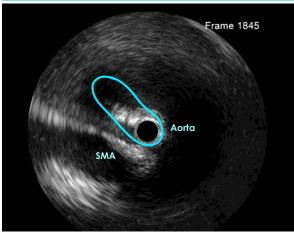
Dr Rutger Brans, Interventional Radiologist, Maastricht University Medical Center, Maastricht, The Netherlands

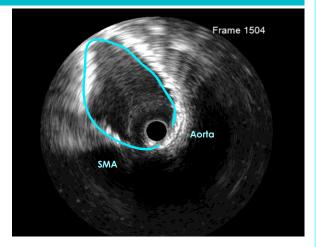
PRESENTATION VIEW IMAGING >

- 45-year-old female
- Long-lasting left-sided flank pain, dull abdominal pain and bilateral leg pain
- Microscopic haematuria and pubic varicosities
- Imaging findings (confirmed with phlebography):
 - Significant compression of the left renal vein between the aorta and superior mesenteric artery
 - Dilated incompetent left ovarian vein
- Other phlebography findings:
 - Left-sided paralumbar dilated collaterals
 - Retrograde filling of the ovarian vein

TREATMENT VIEW IMAGING >

- Ultrasound-guided antegrade placement of a 6F sheath (15cm) into the right common femoral vein under local anaesthesia
- Fluoroscopy-guided 5F catheter placement into the left renal vein
- Phlebography to confirm nutcracker compression. Sheath in right groin exchanged over a stiff 260cm guidewire for a 55cm long 12F sheath. Latter placed into left renal vein
- Intravascular ultrasound (IVUS) to visualise exact compression point, measure stent size/length and landing zone
- Pre-dilatation with 14mm balloon and a 14/60mm self- expanding stent into the left renal vein. Post-dilatation with a 14mm balloon
- Completion phlebography and IVUS showed good result with smooth flow through the stent into the inferior vena cava
- No significant retrograde filling of the left ovarian vein and paralumbar collateral veins
- Sheath removal and five minutes' manual compression to achieve haemostasis in the groin
- One single dose of 5000 IU intravenous infusion given during the procedure


OUTCOME VIEW IMAGING >


- After stent treatment, the patient was very well with no complaints or other symptoms
- Patient developed mild complaints in the left leg after a few weeks, which could not directly related to the nutcracker syndrome
- Pain in left flank and abdominal area was resolved, as was the haematuria
- Control ultrasound duplex at two weeks and six months showed a patent stent with 0% lumen reduction

CONCLUSION

 IVUS imaging provided additional information that was necessary to enable a successful procedure to be performed

ENLARGE IVUS IMAGES >

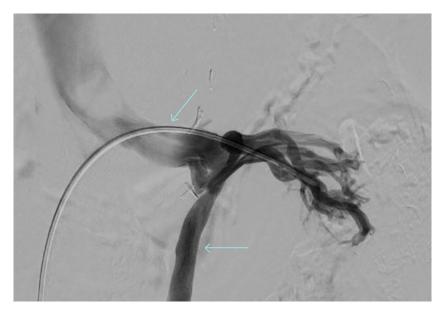
RATIONALE FOR IVUS

- It was not clear from phlebology if length of left renal vein would allow a 6cm-long stent
- IVUS allowed us to:
 - Determine renal vein length and diameter and patency of lumen
 - Identify exact location of compression/stenosis
 - Provide information about the existence of webbing and prothrombotic trabeculation
- IVUS was used at the end of the endovascular treatment to check if there were any stent- related complications, such as early in-stent thrombosis, which could be missed on phlebography

IU: International unit IVUS: Intravascular ultrasound

SMA: Superior mesenteric artery

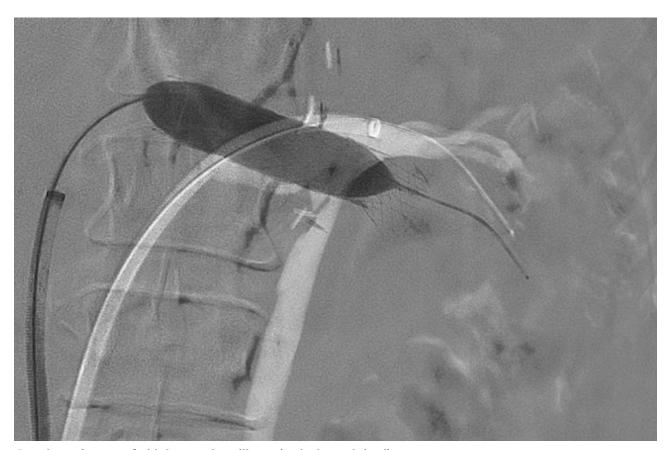



Dr Rutger Brans, Interventional Radiologist, Maastricht University Medical Center, Maastricht, The Netherlands

PRESENTATION

MRV (csTHRIVE sequence) shows compression (arrow) of the left renal vein between aorta on the dorsal side and SMA anteriorly.

Phlebography shows compression of the left renal vein (top arrow) with retrograde contrast filling of a dilated left ovarian vein (bottom arrow).



Dr Rutger Brans, Interventional Radiologist, Maastricht University Medical Center, Maastricht, The Netherlands

TREATMENT

Roadmap image of phlebography with angioplasty post stenting. No indention of the balloon is seen at 6 atmospheric pressure.

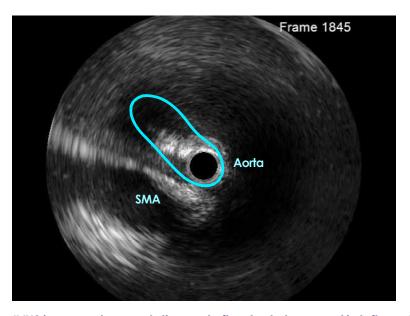
IU: International unit
IVUS: Intravascular ultrasound

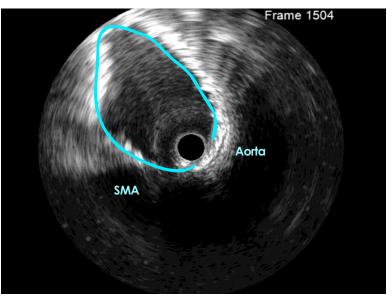
Dr Rutger Brans, Interventional Radiologist, Maastricht University Medical Center, Maastricht, The Netherlands

OUTCOME

Completion phlebography shows nice stent position with good flow. There are no paralumbar collaterals or retrograde filling of ovarian vein.

IU: International unit
IVUS: Intravascular ultrasound





Dr Rutger Brans, Interventional Radiologist, Maastricht University Medical Center, Maastricht, The Netherlands

IVUS IMAGES

IVUS images at presentation and after stent placement in left renal vein (LRV), outlined in blue. Pre treatment the LRV is flattened due compression between aorta and superior mesenteric artery (SMA). After stent placement de LRV is fully opened with good stent apposition and no intraluminal thrombus is seen.

IU: International unit IVUS: Intravascular ultrasound

Results from case studies are not necessarily predictive of results in other cases. Results in other cases may vary.

PI-1268203-AB.

All cited trademarks are the property of their respective owners. CAUTION: The law restricts these devices to sale by or on the order of a physician. Indications, contraindications, warnings, and instructions for use can be found in the product labelling supplied with each device or at www.IFU-BSCI.com. Products shown for INFORMATION purposes only and may not be approved or for sale in certain countries. This material not intended for use in France.

www.bostonscientific.eu

© 2023 Boston Scientific Corporation or its affiliates. All rights reserved.