Correlation of Scar in Cardiac MRI and High-Resolution Contact Mapping of Left Ventricle in a Chronic Infarct Model

Anees Thajudeen, MD; Warren M. Jackman, MD; Brian Stewart, MS; Ivan Cokic, MD; Hiroshi Nakagawa, MD, PhD; Michael Shehata, MD; Allen M. Amorn, MD; Avinash Kali, MS; Ezhi Liu, MD; Doron Harlev, MSc; Nathan Bennett, MEng; Rohan Dharmakumar, PhD; Sumeet S. Chugh, MD; Allen M. Amorn, MD; Avinash Kali, MS; Ezh Liu, MD; Doron Harlev, MSc; Nathan Bennett, MEng; Rohan Dharmakumar, PhD; Sumeet S. Chugh, MD

Published June 2015 in Pacing and Clinical Electrophysiology (PACE)

Introduction
Endocardial mapping for scars and abnormal electrograms (EGMs) is an essential component of ventricular tachycardia ablation. In this study, researchers assessed the utility of ultra-high resolution mapping of ventricular scar using the Rhythmia™ Mapping System from Boston Scientific in a chronic canine infarct model.

Methods
The Rhythmia Mapping System uses an 8.5F deflectable catheter with a mini-basket (1.8 cm diameter) of 8 splines of 8 electrodes (total 64 electrodes, 2.5 mm spacing). The system automatically generates chamber geometry and a HR activation map using EGMs recorded within 5 mm of the chamber surface. It automatically acquires EGM and location information based on EGM stability and respiration phase.

Researchers created chronic infarcts in five anesthetized dogs by ligating the left anterior descending coronary artery. Approximately 5 months later (4.9 ± 0.9), they obtained late gadolinium-enhanced magnetic resonance imaging (LGE MRI) with three-dimensional (3D) gadolinium enhancement signal intensity maps at 1 and 5 mm depths from the endocardium. Ultra-high resolution electroanatomical maps were created using the Rhythmia Mapping System.

Results
The Rhythmia maps contained 7,754 ± 1,960 EGMs per dog, with a mean resolution of 2.8 ± 0.6 mm. Low bipolar voltage (<2 mV) correlated closely with scar on the LGE MRI and the 3D signal intensity map (1 mm depth). The scar areas between the MRI signal intensity map and electroanatomic map matched at 87.7% of sites. Bipolar and unipolar voltages, compared in 592 EGMs from four MRI-defined scar types (endocardial scar, epicardial scar, mottled transmural scar, and dense transmural scar) and normal tissue, were significantly different. A unipolar voltage of <13 mV correlated with transmural extension of scar in MRI. Electrograms exhibiting isolated late potentials (ILPs) were manually annotated and ILP maps were created showing ILP location and timing. ILPs were identified in 203 ± 159 EGMs per dog (within low-voltage areas) and ILP maps showed gradation in timing of ILPs at different locations in the scar.

Conclusion
Ultra-high resolution contact electroanatomical mapping with the Rhythmia Mapping System accurately localized ventricular scar and abnormal myocardial tissue in this chronic canine infarct model. The EGMs provided clear identification of the very low amplitude ILPs within the scar tissue and have the potential to quickly identify targets for ablation.

There were several limitations listed in this study. However the author summarizes by noting that, “Ultimately, human studies are required since chronic infarcts in humans are known to have substantially different scar pathology compared to experimental canine infarcts produced by single coronary ligation.”

The Rhythmia™ Mapping System and accessories are intended for catheter-based atrial and ventricular mapping. The mapping system allows real-time visualization of intracardiac catheters as well as display of cardiac maps in a number of different formats. The acquired patient signals, including body surface ECG and intracardiac electrograms, may also be recorded and displayed on the system’s display screen.

CONTRAINDICATIONS
There are no known contraindications.

WARNINGS AND PRECAUTIONS
The use of the Rhythmia Mapping System in conjunction with radio frequency ablation and other medical devices, as a part of the diagnosis and treatment of cardiac arrhythmias, may pose a risk of adverse events, such as cardiac perforation and arrhythmias (new and/or exacerbation of existing arrhythmias) that may require additional intervention. Do not operate the Rhythmia Mapping System near flammable anesthetics. System operation near flammable anesthetics may cause an explosion that could cause injury or death to the patient or user. All devices that are connected to the Rhythmia Mapping System must meet IEC 60601-1 requirements and any other relevant safety standards. When connected to other devices, the combined systems’ configuration must meet the IEC 60601-1-1 safety standards. The use of the Rhythmia Mapping System with accessories and devices that do not comply with relevant standards may reduce the safety of the system, cause equipment damage or system malfunction, or harm to the patient or user. Only stimulators that are certified for IEC 60601 should be used with the Rhythmia Mapping System. Do not connect life-sustaining pacing through the Rhythmia Mapping System. The system is not intended to provide life-sustaining therapy and should not be used as such. In case of need for emergency pacing, or any failure of stimulator routing, directly connect the desired paced channel to the stimulator. The Rhythmia Mapping System is only designed to route the stimulation signal to the desired channel. To start or stop stimulation, always use the controls on the external stimulator. Use the Rhythmia Mapping System only with one of the following RF ablation generators: Maestro 3000™, Sterex™, or IBI™. Do not use the system with other RF ablation genera-
tors. Compatibility with other RF ablation generators has not been demonstrated. Do not apply RF energy larger than 150W to ablation catheters that are connected to the Maestro 3000 RF generator and the Rhythmia Mapping System. Do not apply RF energy larger than 70W to ablation catheters that are connected to the IBI RF generator and the Rhythmia Mapping System. To reduce the risk of electric shock or equipment damage, do not clean the Rhythmia Mapping System when it is plugged in, turned on, or connected to a patient. Cleaning the system while it is in use and connected to a power source may cause an electrical shock that should be used as a reference, for example to identify the location of catheter electrodes in the heart. To reduce the risk of electric shock, assure that any ECG cables and electrodes are not in contact with any other conductive parts, including ground. To reduce the risk of electric shock during defibrillation, assure that the exposed connector tips on the ECG output box are covered at all times with the protective, non-conductive material provided with the ECG output box. Do not use the ECG output box if the protective cover is damaged (see ECG Output Box). The system generates electrical impedance fields as part of its normal operation. Do not use other systems that also generate electrical impedance fields in the same procedure, as this may interfere with the system’s normal operation and reduce the quality of catheter localization, and signals. Magnetic Localization System Do not operate the Localization Generator within 200 mm of installed cardiac implantable electronic devices (CIEDs). Doing so may affect pacing, temporary or permanent pacemaker therapy delivery, or lead to patient discomfort. Signal Station To minimize the risk of electric shock, connect the Signal Station only to supply mains with a protective ground (earth) connection. Use only a funct-
ing properly tested supply main with protective ground (earth) to power the Rhythmia Mapping System. The use of a faulty, ungrounded supply main increases the risk of electrical shock and system malfunction. To minimize the risk of electric shock, prior to using the Rhythmia Mapping System, connect the equipotential socket (located on the Signal Station rear panel) to a common ground. This connection grounds the Rhythmia Mapping System and must remain connected at all times (see Signal Station Setup in the DPU). The Signal Station requires a dedi-
cated, 24V DC power supply, which is provided by Boston Scientific with the Signal Station. To reduce the risk of Signal Station damage, use only the power supply provided by Boston Scientific for use with the Signal Station. To reduce the risk of Signal Station damage, do not connect or disconnect the Signal Station to its power supply while the Signal Station is turned on. To minimize potential exposure to water or liquid, prevent fluids from entering air vents. Do not place beverages or containers of water or liquid directly on or near the Signal Station or other system com-
ponents. Do not block the air vent on the Signal Station during Signal Station use. Blocking the air vent during Signal Station use can cause the Signal Station to overheat, which may affect system operation. Use only a flat stable surface to hold the Signal Station and Signal Station-related accessories. Working with liquid, do not place beverages or containers of water or liquid directly on or near the Workstation or other system components. Use only a flat stable surface to hold or transport the Workstation and Workstation-related accessories. To prevent loss of data, frequently back up the data by archiving cases no longer needed for immediate access. Cables Use only the ECG cables approved for use with the Rhythmia Mapping System. ECG cables provided by Rhythmia Medical are designed and tested to protect the Signal Station from defibrillation energy. Using other ECG cables may cause serious damage to the system hardware. Prior to using the Rhythmia Mapping System, inspect all external connections and cable connectors. Make sure all connections are secure. Tighten any loose connections prior to using the system. Do not use excessive force when connecting or disconnecting cable connectors. Exces-
sive force can damage the connectors, which may cause system malfunction. Do not kink or sharply bend cables. Kinks and sharp bends can damage the cables, which may cause system malfunction. To minimize the risk of damage, store unused system cables in a clean, dry, and secure location, consistent with storage guidelines & Transporting in the DPU. Electrical Never use ungrounded electrical outlets to power any system components. Do not use extension cords or adapters for ungrounded outlets. Using ungrounded outlets, extension cords, or adapters may cause equipment damage, system malfunction. BodY surfAcE Electrodes Use care when attaching the body surface electrodes to lead connectors. To minimize the risk of electrical shock, make sure that electrodes and lead connectors do not contact one another, metal or ground. To prevent low quality signals from body surface electrodes, properly prepare the skin prior to attaching the electrodes. Do not use excessive gel as this may lead to shorts between different electrodes. Environmental Do not immerse any cable connectors in water or liquid. Immersion in water or liquid may damage cable connectors. Magnetic Localization System: Manually disabling the Localization Generator disables all catheter visualization and localization capabilities, including impedance tracking. Do not place the Localiza-
tion Unit (ISU) or Sensor Interface Unit (SIU) within 1m of the Localization Generator. Doing so may lead to inaccurate tracking. Do not place cables used with the Rhythmia Mapping System within 30mm of the Localization Generator cable. If these cables are within 30mm or less, par-
ticularly if they are parallel to each other, inaccurate tracking or “noisy” signals may occur. Do not coil the Localization Generator cable. Doing so can disturb the magnetic field of the Localization Generator, which may lead to inaccurate tracking. Do not use the Magnetic Localization System in the presence of other magnetic fields or large metal objects. Doing so may lead to inaccurate tracking. Localization Generator Manually disabil-
ing the Localization Generator disables all catheter visualization and localization capabilities, including impedance tracking. During the Procedure To reduce catheter configuration mistakes, when connecting catheters to the system, always verify the signals by reviewing the signal display and reviewing the position of the electrodes to displayed channels. To ensure correct clinical decisions, use fluoroscopy, ultrasound, pace mapping or other visualization techniques to verify mapping results and catheter position. Always compare the anatomical map to the patient’s expected anatomy. When a catheter localization error is encountered, use fluoroscopy or other visualization tech-
niques to verify the catheter. Do not use the system only as a reference, for example to identify anatomical landmarks, to aid in the advance of mapping. Use other visualization tools, such as fluoroscopy or echocardiography to verify catheter location. During the mapping pro-
cedure, do not disconnect the Localization Unit from the Signal Station and/or the Localization Generator from the Localization Unit. Ensure caps are installed on Localization Unit SIU connection ports that are not in use. (Rev A)

1 Heart Institute, Cedars Sinai Medical Center, Los Angeles, California
2 Heart Rhythm Institute, University of Oklahoma, Oklahoma City, Oklahoma
3 Rhythmia Medical, Boston Scientific, Marlborough, Massachusetts
4 Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, California
5 Department of Bioengineering, University of California, Los Angeles, California
6 David Geffen School of Medicine, University of California, Los Angeles, California

CAUTION: Federal law (USA) restricts this device to sale by or on the order of a physician. Rx only. Prior to use, please see the complete “Directions for Use” for more information on Indications, Contraindications, Warnings, Precautions, Adverse Events, and Operator’s Instructions.

Material not for use or distribution in France