

Blazer[™] Family of Ablation Catheters

Predictable. Dependable. Proven.

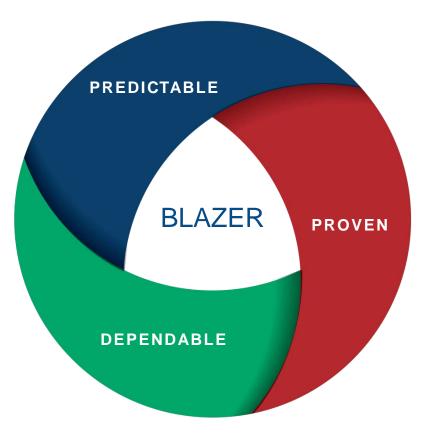
© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

Blazer is a registered or unregistered trademark of Boston Scientific or its affiliates. All other trademarks are property of their respective owners.

Navigation Tips

Blazer[™] Predictable. Dependable. Proven.

Predictable Handling


Designed for consistent handling – whether mapping or delivering therapy.

- Precise micro-movements
- Torqueability
- In-plane steering
- Tip stability

Dependable Performance

Catheter can be relied upon to perform consistently throughout long cases.

• Curve retention

Proven Results

One of the top selling therapeutic catheters.

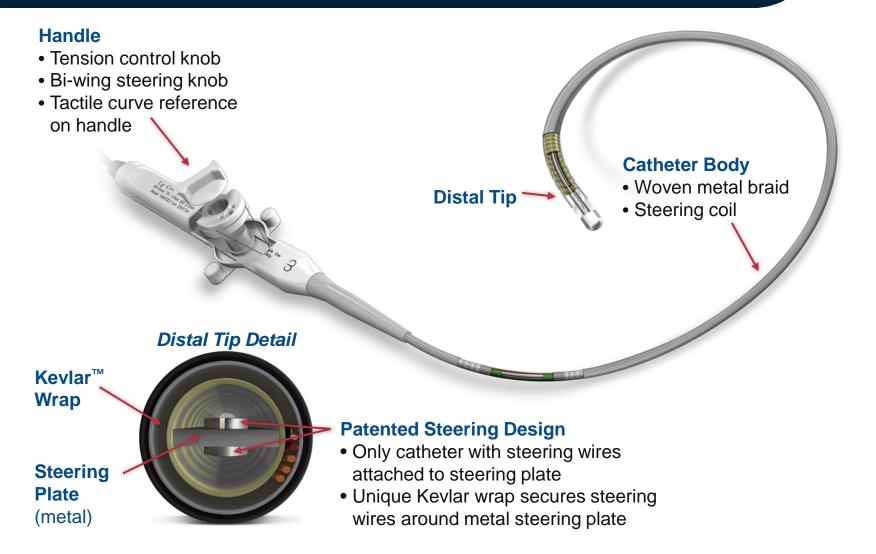
 Over 1 million catheters sold*

*From 1999 through 2014

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BLAZER II XP


BLAZER PRIME

CURRENT DENSITY

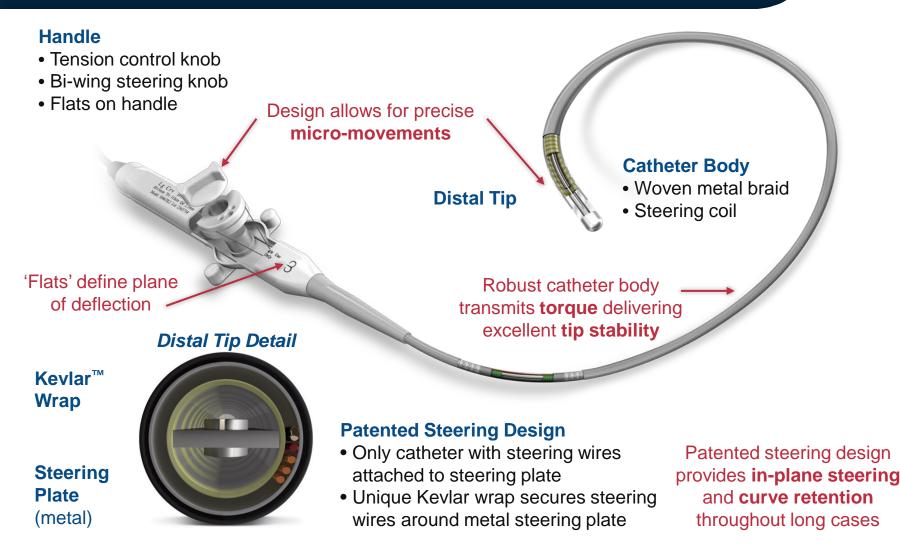
COMPETITIVE INFO

What makes a Blazer[™] a BLAZER?

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BLAZER II BLAZER II HTD


BLAZER II XP

BLAZER PRIME

CURRENT DENSITY

What makes a Blazer[™] a BLAZER?

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BLAZER II BI AZER II HTD

BLAZER II XP

CURRENT DENSITY

Blazer[™] II and Blazer[™] II HTD Temperature Ablation Catheter

C surface use

 $\ensuremath{\textcircled{\sc 0}}$ 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BLAZER II BLAZER II HTD

BLAZER II XP

BLAZER PRIME

Blater

CURRENT DENSITY

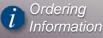
COMPETITIVE INFO

ORDERING INFORMATION

Scientific

Blazer[™] II and Blazer[™] II HTD Temperature Ablation Catheter

Predictable Handling Over 25 models designed


to maneuver and maintain contact in various anatomies.

Proven Results

Over 1 million catheters sold*

Dependable Performance Durable construction provides curve

retention throughout long cases.

1 of 2

* From 1999 through 2014

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BLAZER II XP

BLAZER PRIME

CURRENT DENSITY

SVC

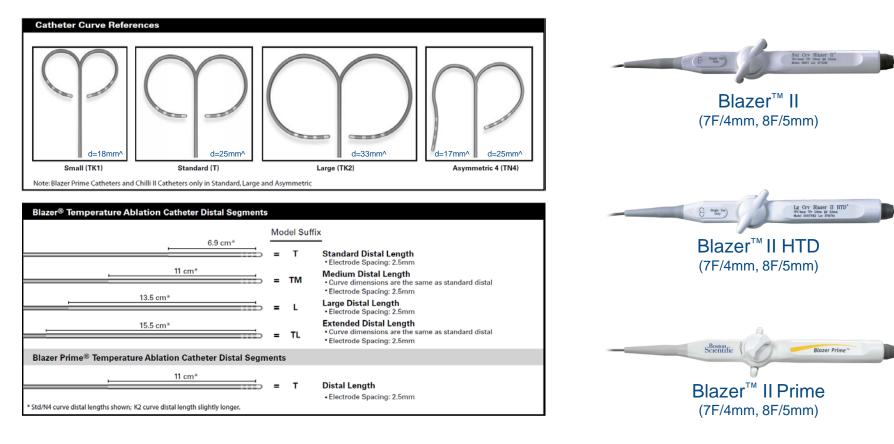
IVC

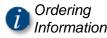
arget

Sites

CS

Compact AV Node


Tricuspic Annulus Slow Pathway Target Sites


His Bundle

COMPETITIVE INFO

The Blazer[™] II Platform AVNRT & Accessory Pathway Toolsets

Information

2 of 2

^ Dimensions are for reference only.

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

Blazer[™] II XP Temperature Ablation Catheter

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BLAZER II BLAZER II HTD

BLAZER II XP

BLAZER PRIME

Single Use Only

CURRENT DENSITY

DENSITY COMPETITIVE INFO

ORDERING INFORMATION

Std Crv Blazer[®] II BFr/8mm 7Fr 110em Qd 2.5mm Model 45007H Lot 4096568

Blazer[™] II XP **Temperature Ablation Catheter**

Predictable Handling

- Assists in reaching the Isthmus and maintaining contact
- Allows for backsteering approach

Proven Clinical Results

- The market leading large tip catheter in the US for treating Type 1 Atrial Flutter.
- Lower recurrence rates *i* More information
- More efficient procedures with 10mm tip *i* More information
- 100 W available with the Maestro 3000[™] **Cardiac Ablation System**

Greater than 70W required in 85% of procedures *i* More information

Dependable Performance

Std

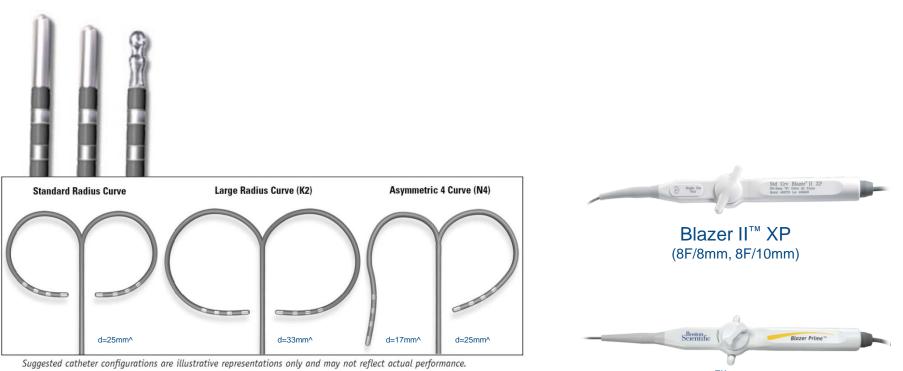
 Excellent curve retention to reach and maintain contact with Isthmus.

Ordering Information

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

BI AZER II

BLAZER PRIME


COMPETITIVE INFO

Crv Blazerº II

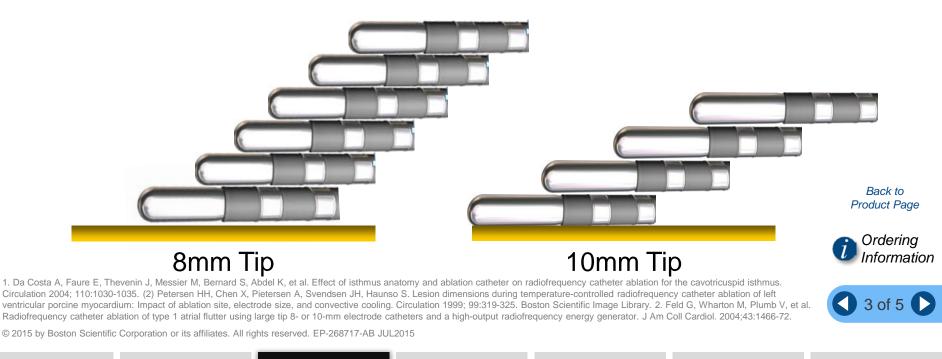
BFr/8mm 7Fr 110cm Qd 25mm Model 45007H Lot 4096588

The Blazer[™] II XP Platform Type 1 Atrial Flutter Toolsets

Blazer[™] Prime XP (8F/8mm, 8F/10mm)

^ Dimensions are for reference only.

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015



A typical Isthmus is approximately 3cm long¹

Benefits of a 10mm vs. 8mm:

- 29% fewer RF applications²
- 38% less ablation time²

INTRODUCTION

BLAZER II BLAZER II HTD

BLAZER II XP

BLAZER PRIME

CURRENT DENSITY

COMPETITIVE INFO

Market leading ablation catheter for right sided procedures. The Data Speaks for Itself...

FDA SUBMISSION DATA FOR TYPE 1 ATRIAL FLUTTER

BOSTON SCIENTIFIC: FDA Submission Data for Blazer II XP ¹										
			٤	SUCCESS DATA	\$	PROCEDURE DATA			COMPLICATION DATA	
FDA Approval	PMA#	# of Patients	Acute Success	Chronic Success	Overall Success	Total Procedure Time*	Total Fluoroscopy Time*	Total RF Appllications	Saline Infused	Major Complications
8/25/2003	P020025	250	94%	96%	90%	126 min	28.5 min	11.5	0 L	8%

Design:

Prospective, non-randomized, multi-center study to determine the safety and efficacy of ablating type 1 isthmus dependent atrial flutter (AFL) with Blazer II XP.

*Note: These times pertain to cases where only flutter was ablated (no other arrhythmias).

http://www.fda.gov

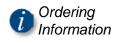
SSE Clinical Data on file. Boston Scientific Corporation.

² Biosense Webster, P0030031 Summary of Safety and Effectiveness Data version 5.1

BI AZER II

BLAZER II HTD

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

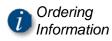


BLAZER II XP

BLAZER PRIME

CURRENT DENSITY

COMPETITIVE INFO


Blazer[™] II XP Temperature Ablation Catheter Blazer XP Clinical Information

	BOSTON SCIENTIFIC: Blazer II XP Large-Tip (8 & 10mm) Clinical Trial										
Year Published	Authors	Publication	Total # of Patients	Catheter Used	Acute Success	Atrial Flutter Recurrence	Mean Follow-up	Mean Procedure Time	Mean Fluoro Time		
2004	Feld, G. et al ³	Journal of The American College of Cardiology	169	Blazer II XP 10mm Blazer II XP 8mm (Straight) Blazer II XP 8mm (Contoured)	93%	3%	6 Months	122 min	28.4 min		

Design: Prospective, non-randomized, multi-center study (subset of patients from PMA Study) to determine the safety and efficacy of ablating type-1 isthmus dependent AFL with Blazer II XP.

Feld et al: "A maximum power over 70W was required in 85% of patients". (p.1472)

5 of 5

ORDFRING

INFORMATION

¹ Ilg, K. J., et al. Randomized Comparison of CTI Ablation for Atrial Flutter Using an OI-Tip versus a Large-Tip RF Ablation Catheter. Journal of Cardiovascular Electrophysiology. 2011. vol 22. 1007-1012

² Leiria et al. Improved Flutter Ablation Outcomes Using a 10mm-tip Ablation Catheter. Indian Pacing & Electrophysiology Journal. 2010. vol 10. Num 11. 496-502.

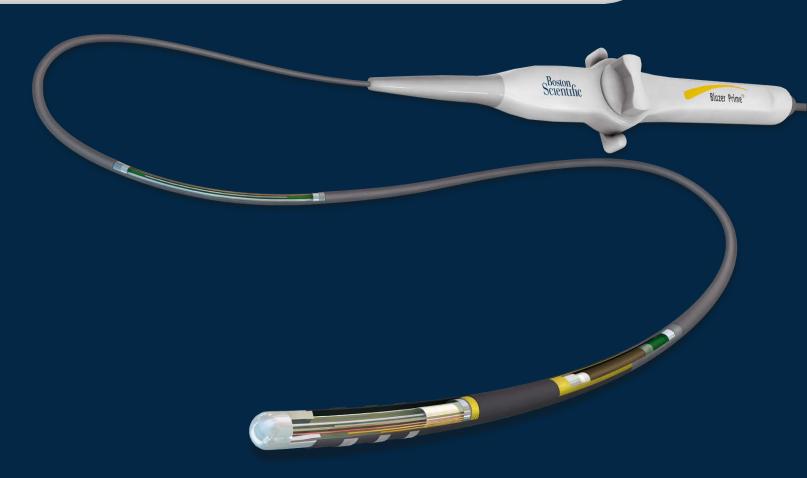
³ Feld G, Wharton M, Plumb V, et al. Radiofrequency catheter ablation of type 1 atrial flutter using large tip 8- or 10-mm electrode catheters and a high-output radiofrequency energy generator. J Am Coll Cardiol. 2004;43:1466-72.

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BLAZER II BLAZER II HTD

BLAZER II XP


BLAZER PRIME

CURRENT DENSITY

COMPETITIVE INFO

Blazer Prime[™] Bidirectional Temperature Ablation Catheter

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BLAZER II BLAZER II HTD

BLAZER II XP

BLAZER PRIME

CURRENT DENSITY

DENSITY CC

Blazer Prime[™] **Bidirectional Temperature Ablation Catheter**

Blazer Prime

Predictable Handling

Through enhanced control

- 70% greater pushability¹ reducing the need for a long sheath
- 17% greater torqueability
- 59% greater lateral contact³
- Improved trackability²

Blazer Prime for:

AVNRT

Flutter

Accessory

RVOT Pathways

Scientific

• 200% improvement in curve retention³

Dependable Performance

Ordering Information

of 3

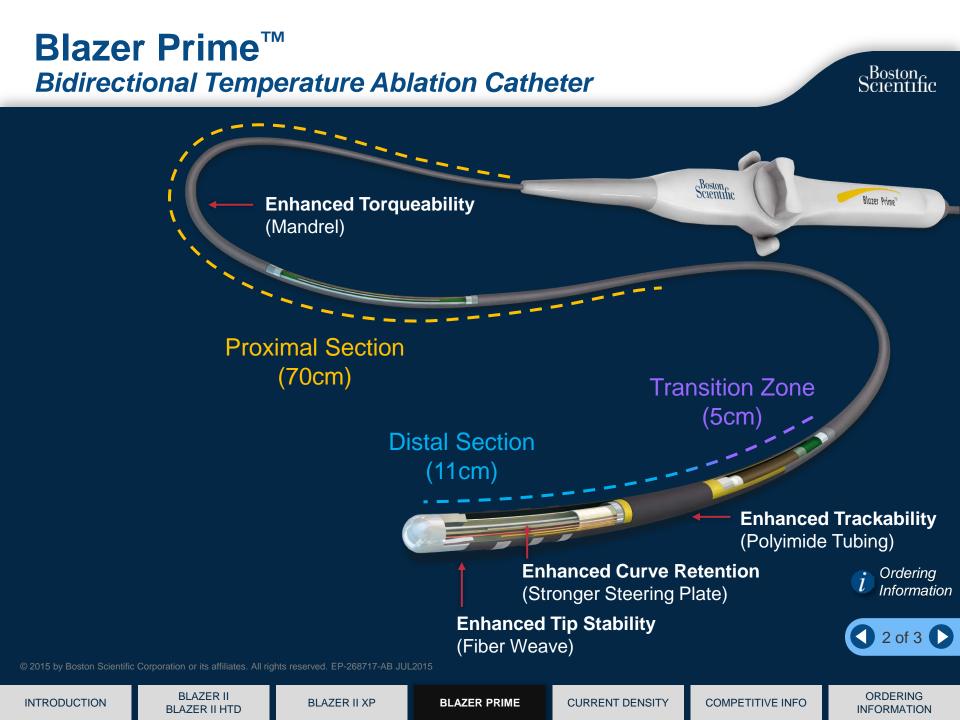
performed by Boston Scientific. N=5. Data on file. Bench testing not necessarily predictive of clinical performance. (3) Curve retention/curve angle degradation bench testing compared Blazer Prime and Blazer[™] II HTD temperature ablation catheters. Bench testing performed by Boston Scientific. N=5. Data on file. Bench test not necessarily predictive of clinical performance. © 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BI AZER II **BLAZER II HTD**

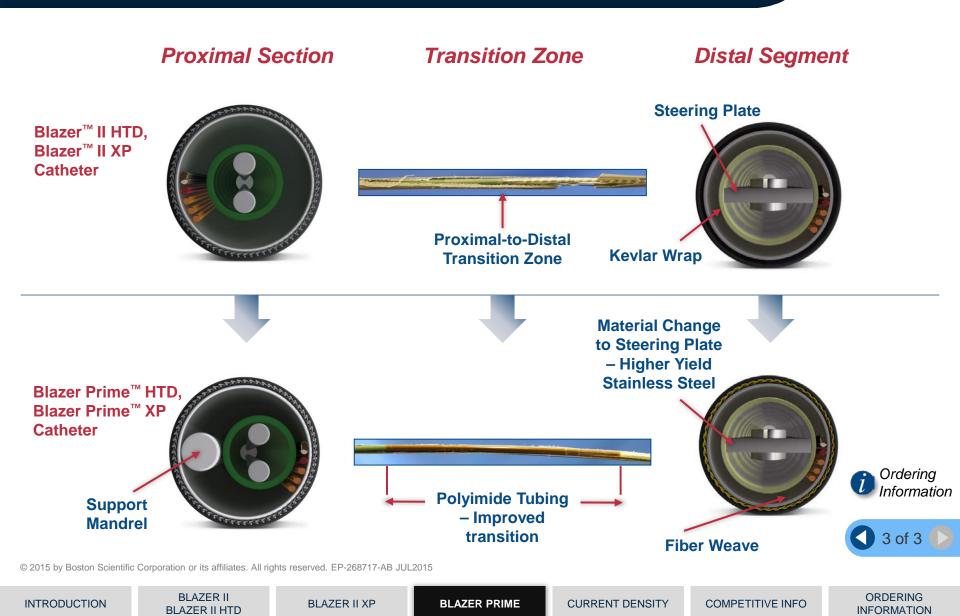
BLAZER II XP

BLAZER PRIME


CURRENT DENSITY

COMPETITIVE INFO

ORDFRING **INFORMATION**



(1) Catheter stiffness profile/3-point bend bench testing compared Blazer Prime and Blazer¹¹ II HTD temperature ablation catheters. Bench testing performed by Boston Scientific. N=5. Data on file. Bench testing not necessarily predictive of clinical performances. (2) Distal torgue bench testing compared Blazer Prime and Blazer[™] II HTD temperature ablation catheters. Bench testing

Blazer Prime[™] HTD/XP vs. Blazer[™] II HTD/XP Catheter Catheter Construction

Boston Scientific

Blazer[™] II vs. Blazer[™] II XP Current Density

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BLAZER II BLAZER II HTD

BLAZER II XP

BLAZER PRIME

Single Use Only

CURRENT DENSITY

DENSITY COMPETITIVE INFO

ORDERING INFORMATION


Std Crv Blazer II XP BFr/8mm TFr 110cm Qd 25mm Model 4500TH Lot 4098588

A larger tip catheter requires higher power to reach current densities (and therefore resistive heating intensities) necessary for creating effective lesions.

Catheter Size	Electrode Impedance		>					Power (W))			
	Surface Area	(Ω)	ensity in²)	20	30	40	50	60	70	80	90	100
7F/4mm	0.050	100	nt D nps/	8.9	10.9	12.6	14.1		\frown			
8F/8mm	0.098	60	Curre (an	5.9	7.2	8.3	9.3	10.2	11.0	11.7	12.5	13.1
8F/10mm	0.123	50		5.1	6.3	7.3	8.1	8.9	9.6	10.3	10.9	11.5

>70W were required in 85% of the procedures during the atrial flutter clinical trial*

A larger tip catheter requires higher power to reach current densities (and therefore resistive heating intensities) necessary for creating effective lesions.

Catheter Size	Electrode In	npedance	>					Power (W)			
	Surface Area	(Ω)	Density s/in ²)	20	30	40	50	60	70	80	90	100
7F/4mm	0.050	100	i i i i i i i i i i i i i i i i i i i	8.9	10.9	12.6	14.1					
8F/8mm	0.098	60	Current (amp	5.9	7.2	8.3	9.3	10.2	11.0	11.7	12.5	13.1
8F/10mm	0.123	50	Ū	5.1	6.3	7.3	8.1	8.9	9.6	10.3	10.9	11.5

>70W were required in 85% of the procedures during the atrial flutter clinical trial*

Single Use Only

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BLAZER II BLAZER II HTD

BLAZER II XP

BLAZER PRIME

CURRENT DENSITY

NSITY CON

COMPETITIVE INFO

ORDERING INFORMATION

Std Crv Blazer[®] II XP BFr/8mm 7Fr 110cm Qd 25mm Model 46007H Lot 4096688

Scientific

	HEAD-TO-HEAD STUDY: Blazer II XP vs NaviStar ThermoCool™										
Year Published	Authors	Total # of Patients	Catheter Used	# of Patients	Max Generator Settings	Acute Success	Atrial Flutter Recurrence	Mean Follow-up	Mean Procedure Time	Mean Fluoro Time	
		· 148	1	Blazer 10mm (BSC)	143	100W, 60-65°C		1.2% / yr		70 min	24 min
2010	Leria, T. et al²		NaviStar DS 8mm (J&J)	55	60W, 60-65°C	97.6%*	10.1% / yr	19 Months	105 min	37 min	
eta	erai		NaviStar ThermoCool (J&J)	14	50W		6.9% / yr	WORTHIS	180 min	110 min	

Design: Single-center registry comparing ablation of isthmus dependent AFL with 10mm tip catheter set to 100W, 8 mm tip set to 60W, irrigated tip catheter set to max of 50W.

Leiria et al: "Procedure time & fluoroscopic time were shorter with the 10mm catheter vs. 8mm and open-irrigated". (p.501) Study not sponsored by Boston Scientific. *Study did not break out Acute Success rate for each catheter.

Study not sponsored by Boston Scientific.

*Acute success includes cross-over to the other catheter after 30 minutes of RFA.

1 Ilg, K. J., et al. Randomized Comparison of CTI Ablation for Atrial Flutter Using an OI-Tip versus a Large-Tip RF Ablation Catheter. Journal of Cardiovascular Electrophysiology. 2011. vol 22. 1007-1012

² Leiria et al. Improved Flutter Ablation Outcomes Using a 10mm-tip Ablation Catheter. Indian Pacing & Electrophysiology Journal. 2010. vol 10. Num 11. 496-502

³ Feld G, Wharton M, Plumb V, et al. Radiofrequency catheter ablation of type 1 atrial flutter using large tip 8- or 10-mm electrode catheters and a high-output radiofrequency energy generator. J Am Coll Cardiol. 2004;43:1466-72.

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BLAZER II BLAZER II HTD

BLAZER II XP

BLAZER PRIME

CURRENT DENSITY

	HEAD-TO-HEAD STUDY: Blazer II XP vs NaviStar ThermoCool™										
Year Published	Authors	Total # of Patients	Catheter Used	# of Patients	Max Generator Settings	Acute Success	Atrial Flutter Recurrence	Mean Follow-up	Mean Procedure Time	Mean Fluoro Time	
	lla K	g, K. t al ¹ Blazer 10mm (BSC) NaviStar ThermoCool (J&J)			100W, 60°C		0%	6	95 min	23.5 min	
	et al ¹		30	40W, 48°C	98%*	10%	6 Months	114 min	23.9 min		

Design: Prospective, randomized, single-center study to compare the efficiency of CTI ablation to eliminate AFL using a large tip catheter (10 mm) and open irrigated tip catheter.

Ilg et al: "Complete conduction block across the CTI is achieved more quickly with a LTC (Large Tip Catheter) than an OITC (Open Irrigated Tip Catheter)". (p.1007)

Study not sponsored by Boston Scientific.

*Acute success includes cross-over to the other catheter after 30 minutes of RFA.

1 Ig, K J., et al. Randomized Comparison of CTI Ablation for Atrial Flutter Using an OI-Tip versus a Large-Tip RF Ablation Catheter. Journal of Cardiovascular Electrophysiology. 2011. vol 22. 1007-1012

² Leiria et al. Improved Flutter Ablation Outcomes Using a 10mm-tip Ablation Catheter. Indian Pacing & Electrophysiology Journal. 2010. vol 10. Num 11. 496-502

³ Feld G, Wharton M, Plumb V, et al. Radiofrequency catheter ablation of type 1 atrial flutter using large tip 8- or 10-mm electrode catheters and a high-output radiofrequency energy generator. J Am Coll Cardiol. 2004;43:1466-72.

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BLAZER II XP

BLAZER PRIME

CURRENT DENSITY

The gold standard of ablation catheters for Atrial Flutter. The Data Speaks for Itself... Proven Clinical Results

	Blazer 8mm, *				Blazer II XP 8mm, 10mm	ThermoCool™ 3.5mm
PMA Data¹	Acute Success Rate	94%	llg et al.²	Recurrence Rate	0%*	10%*
	Recurrence Rate	4%	Leiria et al.⁴	Recurrence Rate	1.2%**	6.9%**

Blazer II XP has a high Acute Success Rate.1

Blazer II XP has a much lower Recurrence Rate in these two studies.

* Recurrence rate with mean follow-up at 6 months.

** Recurrence rate per year with mean follow-up at 19 months.

Market leading ablation catheter for right sided procedures. The Data Speaks for Itself...

FDA SUBMISSION DATA FOR TYPE 1 ATRIAL FLUTTER

BIOSENSE WEBSTER: FDA Submission Data for Navistar ThermoCool^{™2}

SUCCESS DATA						PROCE DAT		COMPLICATION DATA		
FDA Approval	PMA#	# of Patients	Acute Success	Chronic Success	Overall Success	Total Procedure Time*	Total Fluoroscopy Time*	Total RF Appllications	Saline Infused	Major Complications
11/05/2004	P030031	186	85%	93%	79%	314 min	48.7 min	19.0	1 L	15.8%

Design:

Prospective, non-randomized, multi-center study to determine if the Navistar ThermoCool catheter when used in conjunction with the Carto EP/XP Navigation system is safe and effective at the treatment of type 1 atrial flutter.

*Note: These times pertain to cases where only flutter was ablated (no other arrhythmias).

http://www.fda.gov

¹ SSE Clinical Data on file. Boston Scientific Corporation.

² Biosense Webster. P0030031 Summary of Safety and Effectiveness Data version 5.1

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BLAZER II XP

CURRENT DENSITY

Blazer[™] Family Ordering Information

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

C states too

INTRODUCTION

BLAZER II BLAZER II HTD

BLAZER II XP

BLAZER PRIME

High the state of the state of

CURRENT DENSITY

COMPETITIVE INFO

Blazer[™] II Temperature Ablation Catheter Ordering Information

Tip: 7F/4mm	Ele	ectrode Configuration: C	uadripolar Electr	Electrode Spacing: 2.5mm				
Catheter Model No.	Shaft Size	Curve Style	Distal Shaft Length	Cable Model No.*				
M004 5031T 0	7F	Standard	Standard	M004 651 0				
M004 5031TK1 0	7F	Small	Standard	M004 651 0				
M004 5031TK2 0	7F	Large	Standard	M004 651 0				
M004 5031TN4 0	7F	Asymmetric 4	Standard	M004 651 0				
M004 5031TM 0	7F	Standard	Medium	M004 651 0				
M004 5031TMK2 0	7F	Large	Medium	M004 651 0				
M004 5031TL 0	7F	Standard	Extended	M004 651 0				
Made to Order Items (minimum order 25 units; see Ordering Information section for details)								
M004 5031TMN4 0	7F	Asymmetric 4	Medium	M004 651 0				

<i>Tip:</i> 8F/5mm	El	uadripolar Electro	lar Electrode Spacing: 2.5mm			
Catheter Model No.	Shaft Size	Curve Style	Distal Shaft Length	Cable Model No.*		
M004 5086T 0	7F	Standard	Standard	M004 651 0		
M004 5086TK2 0	7F	Large	Standard	M004 651 0		
M004 5086TN4 0	7F	Asymmetric 4	Standard	M004 651 0		
M004 5086TMK2 0	7F	Large	Medium	M004 651 0		
M004 5086TL 0	7F	Standard	Extended	M004 651 0		
Made to Order Items (m	ninimum order	25 units; see Ordering Info	ormation section for detail	s)		
M004 5086TK1 0	7F	Small	Standard	M004 651 0		
M004 5086TM 0	7F	Standard	Medium	M004 651 0		

1 of 5 **(**

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BLAZER II XP

BLAZER PRIME

CURRENT DENSITY

Blazer[™] II HTD Temperature Ablation Catheter Ordering Information

<i>Tip:</i> 7F/4mm	Ele	ectrode Configuration: C	uadripolar Electro	adripolar <i>Electrode Spacing:</i> 2.5mm			
Catheter Model No.	Shaft Size	Curve Style	Distal Shaft Length	Cable Model No.*			
M004 5031TH 0	7F	Standard	Standard	M004 651 0			
M004 5031THK2 0	7F	Large	Standard	M004 651 0			
M004 5031THN4 0	7F	Asymmetric 4	Standard	M004 651 0			
M004 5031THM 0	7F	Standard	Medium	M004 651 0			
M004 5031THMK2 0	7F	Large	Medium	M004 651 0			
Made to Order Items (minimum order 25 units; see Ordering Information section for details)							
M004 5031TMN4 0	7F	Asymmetric 4	Medium	M004 651 0			

<i>Tip:</i> 8F/5mm	Ele	ectrode Configuration: Q	uadripolar Electro	Electrode Spacing: 2.5mm		
Catheter Model No.	Shaft Size	Curve Style	Distal Shaft Length	Cable Model No.*		
M004 5086TH 0	7F	Standard	Standard	M004 651 0		
M004 5086THK2 0	7F	Large	Standard	M004 651 0		
M004 5086THN4 0	7F	Asymmetric 4	Standard	M004 651 0		
M004 5086THMK2 0	7F	Large	Medium	M004 651 0		
Made to Order Items (m	ninimum order	25 units; see Ordering Info	ormation section for details	s)		
M004 5086THM 0	7F	Standard	Medium	M004 651 0		
M004 5086THMN4 0 7F		Asymmetric 4	Medium	M004 651 0		

Back to Product Page

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BLAZER II XP

BLAZER PRIME

CURRENT DENSITY

COMPETITIVE INFO

Tip: 8F/8mm Straight	Electrode Configuration: Quadripolar			Electrode Spacing: 2.5mm	
Catheter Model No.	Shaft Size	Curve Style	Distal Shaft Length	Cable Model No.*	
M004 4500TH 0	7F	Standard	Standard	M004 651 0	
M004 4500THM 0	7F	Standard	Medium	M004 651 0	
M004 4500THK2 0	7F	Large	Standard	M004 651 0	
M004 4500THMK2 0	7F	Large	Medium	M004 651 0	
M004 4500THN4 0	7F	Asymmetric 4	Standard	M004 651 0	

Tip: 8F/10mm Straight	Ele	ectrode Configuration: Q	uadripolar Electr	Electrode Spacing: 2.5mm	
Catheter Model No.	Shaft Size	Curve Style	Distal Shaft Length	Cable Model No.*	
M004 4790TH 0	7F	Standard	Standard	M004 651 0	
M004 4790THM 0	7F	Standard	Medium	M004 651 0	
M004 4790THK2 0	7F	Large	Standard	M004 651 0	
M004 4790THMK2 0	7F	Large	Medium	M004 651 0	
M004 4790THN4 0	7F	Asymmetric 4	Standard	M004 651 0	

Tip: 8F/8mm Contour	Electrode Configuration: Quadripolar Electrode			lectrode Spacing: 2.5mm	
Catheter Model No.	Shaft Size	Curve Style	Distal Shaft Length	Cable Model No.*	
M004 4770TH 0	7F	Standard	Standard	M004 651 0	
M004 4770THK2 0	7F	Large	Standard	M004 651 0	
M004 4770THMK2 0	7F	Large	Medium	M004 651 0	
M004 4770THN4 0	7F	Asymmetric 4	Standard	M004 651 0	
Made to Order Items (minimum order 25 units; see Ordering Information section for details)					
M004 4770THN4 0	7F	Standard	Medium	M004 651 0	

Back to Product Page

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BLAZER II XP

BLAZER PRIME

CURRENT DENSITY

COMPETITIVE INFO

Blazer Prime[™] HTD Temperature Ablation Catheter Ordering Information

Tip: 7F/4mm Straight	Electrode Configuration: Quadripolar		Electrode Spacing: 2.5mm	
Catheter Model No.	Shaft Size	Curve Style	Cable Mode	l No.*
M004 P5031TH 0	7F	Standard	M004 65	10
M004 P5031THK2 0	7F	Large	M004 65	10
M004 P5031THN4 0	7F	Asymmetric 4	M004 65	10

Tip: 8F/5mm Straight	Electrode Configuration: Quadripolar		Electrode Spacing: 2.5mm	
Catheter Model No.	Shaft Size	Curve Style	Cable Mode	el No.*
M004 P5086TH 0	7F	Standard	M004 65	1 0
M004 P5086THK2 0	7F	Large	M004 65	10
M004 P5086THN4 0	7F	Asymmetric 4	M004 65	1 0

Back to Product Page

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BLAZER II XP

BLAZER PRIME

CURRENT DENSITY

COMPETITIVE INFO

IVE INFO

Blazer Prime[™] XP *Temperature* Ablation Catheter Ordering Information

Tip: 8F/8mm Straight	Ele	ectrode Configuration: Q	uadripolar Electrode Spacing: 2.5	imm
Catheter Model No.	Shaft Size	Curve Style	Cable Model No.*	
M004 P4500TH 0	7F	Standard	M004 651 0	
M004 P4500THK2 0	7F	Large	M004 651 0	
M004 P4500THN4 0	7F	Asymmetric 4	M004 651 0	
Tip: 8F/10mm Straight	Ele	ectrode Configuration: Q	uadripolar Electrode Spacing: 2.5	Smm
Catheter Model No.	Shaft Size	Curve Style	Cable Model No.*	
M004 P4790TH 0	7F	Standard	M004 651 0	
M004 P4790THK2 0	7F	Large	M004 651 0	
Made to Order Items (minimum order 25 units; see Ordering Information section for details)				
M004 P4790THN4 0	7F	Asymmetric 4	M004 651 0	
Tip: 8F/8mm Contour (VM) Electrode Configuration: Quadripolar Electrode Spacing: 2.5mm				
Catheter Model No.	Shaft Size	Curve Style	Cable Model No.*	
M004 P4770THK2 0	7F	Large	M004 651 0	

Back to Product Page

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BLAZER II XP

BLAZER PRIME

CURRENT DENSITY

COMPETITIVE INFO

Abbreviated DFUs

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

BLAZER II

INTRODUCTION	
--------------	--

BLAZER II XP

BLAZER PRIME

CURRENT DENSITY

COMPETITIVE INFO

Blazer[™] II and Blazer[™] II HTD Temperature Ablation Catheters (US DFU)

Indication for Use*

When using the Blazer II Catheter/Blazer II HTD Catheters: The Boston Scientific Cardiac Ablation System is indicated for creating endocardial lesions during cardiac ablation procedures to treat arrhythmia.

Contraindications

The use of the device is contraindicated in patients with active systemic infection. The transeptal approach is contraindicated in patients with left atrial thrombus or myxoma, or interatrial baffle or patch. The retrograde transaortic approach is contraindicated in patients with active replacement.

Warnings

- Catheter ablation procedures present the potential for significant x-ray exposure, which can result in acute radiation injury as well as increased risk for somatic and genetic effects, to both patients and laboratory staff due to
 the x-ray beam intensity and duration of the fluoroscopic imaging. Catheter ablation should only be performed after adequate attention has been given to the potential radiation exposure associated with the procedure, and
 steps taken to minimize this exposure. Careful consideration must therefore be given for the use of the device in pregnant women.
- Care must be taken to ensure that any equipment used in connection with the BSC catheters, be type CF, be defibrillation proof, meet EN 60601-1 electrical safety requirements, and comply with all local regulatory requirements for the specified intended use.
- Patients undergoing AV nodal modification or ablation of septal accessory pathways are at risk for inadvertent AV block. It is advisable to use lower initial power in such patients and to monitor anterior conduction closely during RF power delivery.
- Pacemakers and implantable cardioverter/defibrillators can be adversely affected by RF signals. It is important to:
- a) have temporary external sources of pacing available during ablation,
- b) temporarily reprogram the pacing system to minimum output or 000 mode to minimize risk of inappropriate pacing,
- c) exercise extreme caution during ablation when in close proximity to atrial or ventricular permanent pacing leads, and
- d) perform complete pacing system analysis on all patients after ablation.
- Implanted cardioverter/defibrillators should be deactivated during delivery of RF power.
- During a transaortic approach, adequate fluoroscopic visualization is necessary to avoid placement of the ablation catheter within the coronary vasculature. Catheter placement and RF power application within the coronary artery has been associated with myocardial infarction and death.
- · Patients undergoing left-sided ablation procedures should be closely monitored during the post-ablation period for clinical manifestations of infarction.
- The steerable ablation catheter is intended for single patient use only. Do not reprocess or reuse. Reuse can cause patient injury and/or the communication of infectious disease(s) from one patient to another.
- The use of catheters or cables with unprotected male pin connectors present a risk of electrical hazard. Inadvertent attachment of pin connectors to power supply sockets or connectors could result in electrocution of the patient or operator. Misconnection of the pins could also lead to inappropriate delivery of RF current through a band electrode. The users of component with unprotected male pin connectors must exercise caution during device set-up to prevent patient or operator injury.
- Catheter entrapment within the heart or blood vessels is a possible complication of cardiac ablation procedures. The potential for catheter entrapment may be increased when the catheter is positioned in the vicinity of the chordae tendinae. The occurrence of this complication may necessitate surgical intervention and/or repair of injured tissues.

Precautions

- · Before using, inspect for physical damage including electrical insulation on the cables and the catheter shaft. Replace damaged equipment
- The Blazer II Catheter and the Blazer II HTD Catheter are highly torqueable. Avoid overtorquing. Over-rotating the handle and catheter shaft may cause damage to the distal tip or catheter assembly. Do not rotate the handle and catheter shaft more than 1 1/2 full rotations (540°). If the desired catheter tip position is not achieved, adjust the catheter's curve to disengage the catheter tip from the heart wall, before resuming rotation of the handle and catheter shaft.
- Peri-procedural anticoagulation therapy is recommended for patients undergoing left-sided and transeptal cardiac procedures and should be considered for selected patients undergoing right-sided procedures.
- Careful catheter manipulation must be performed in order to avoid cardiac damage, perforation, or tamonade. Catheter advancement should be done under fluoroscopic guidance. Do not use excessive force to advance or withdraw the catheter when resistance is encountered.
- The sterile packaging and catheter should be inspected prior to use.
- It is recommended not to exceed thirty (30) radiofrequency power applications per catheter.

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

BLAZER II BLAZER II HTD

BLAZER II XP

BLAZER PRIME

CURRENT DENSITY

ORDERING INFORMATION

1 of 9 💽

Blazer[™] II and Blazer[™] II HTD Temperature Ablation Catheters (US DFU)

Precautions (cont'd)

- The Boston Scientific Blazer II Temperature Ablation Catheter and Blazer II HTD Catheters are intended for use with the EPT-1000[™] Cardiac Ablation System Controller and accessories or the Maestro 3000[™] Controller and accessories only.
- Do not attempt to operate the BSC Cardiac Ablation System before thoroughly reading the Cardiac Ablation Controller Operator's Manual.
- The catheter impedance LED display of the Cardiac Ablation Controller should be continuously monitored during RF power delivery. If a sudden rise in impedance is noted, power delivery should be discontinued. The catheter should be removed and the distal tip of the catheter cleaned to eliminate any coagulum.
- Excessive bending or kinking of the catheter shaft may damage internal wires. Manual prebending of the distal curve can damage the steering mechanism and may cause patient injury.
- Cardiac ablation procedures should be performed only by physicians thoroughly trained in the techniques of radiofrequency powered catheter ablation in a fully-equipped electrophysiology laboratory.
- Adequate filtering must be used to allow continuous monitoring of the surface electrocardiogram (ECG) during radiofrequency power applications.
- The long-term risks of protracted fluoroscopy have not been established. Careful consideration must therefore be given for the use of the device in prepubescent children.
- The long-term risks of lesions created by RF ablation have not been established. In particular, any long-term effects of lesions in proximity to the specialized conduction system or coronary vasculature are unknown. Furthermore, the risk/benefit in asymptomatic patients has not been studied.
- Read and follow the dispersive indifferent patch (DIP) electrode manufacturer's instructions for use; the use of DIP electrodes which meet or exceed IEC 60601-1/IEC 60601-1-2 requirements is recommended.
- · Placement of the DIP electrode on the thigh could be associated with the higher impedance, which could result in automatic RF power shut-off.
- The Cardiac Ablation Controller is capable of delivering significant electrical power. Patient or operator injury can result from improper handling of the catheter and DIP electrode, particularly when operating the device. During power delivery, the patient should not be allowed to come in contact with grounded metal surfaces.
- Apparent low power output or failure of the equipment to function correctly at normal settings may indicate faulty application of the DIP electrode or failure of an electrical lead. Do not increase power before checking for obvious defects or misapplication.
- The risk of igniting flammable gases or other materials is inherent in the application of RF power. Precautions must be taken to restrict flammable materials from the area where the ablation procedures are performed.
- Electromagnetic interference (EMI) produced by the Cardiac Ablation Controller during the delivery of RF power may adversely affect the performance of other equipment.
- Regularly inspect and test re-usable cables and accessories. The instrument cables and adapter cables may be sterilized only up to ten times by ethylene oxide sterilization.
- · Boston Scientific relies on the physician to determine, assess and communicate to each individual patient all foreseeable risks of the cardiac ablation procedure.

Adverse Events

The following adverse events are listed in descending order according to their clinical significance as determined by their severity and frequency (<1% unless otherwise noted with an asterisk). A total of 57 adverse events were observed in the 513 procedures performed during the clinical study.

- Cardiac/Vascular
- Death
- Cardiac Tamponade, Perforation, Pericardial Effusion
- Cerebral Vascular Accident
- Myocardial Infarction
- Endocarditis
- Pulmonary Edema
- Pulmonary Embolism, Venous Thrombus
- *Puncture Site Hematoma, Ecchymosis (2.1%)
- Aortic Valve Insufficiency/Wall Motion Abnormality
- Arrhythmic
- Permanent Atrioventricular Block
- Ventricular Fibrillation
- *Non-sustained Ventricular Tachycardia (1.6%)
- Conduction System Abnormalities
- *Atrial Fibrillation, Flutter, Tachycardia (2.5%)
- Pacemaker Failure-to-sense
- Phrenic Nerve Damage

2 of 9

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BLAZER II XP

Blazer[™] II XP Temperature Ablation Catheter (US DFU)

Indication for Use*

The Boston Scientific Corporation Blazer II XP Catheter is indicated for use with the BSC high power Cardiac Ablation Controllers (the Maestro 3000[™] Controller, the EPT-1000XP[™] Controller, and the EPT-1000XP[™] Controller) and Accessories for the treatment of sustained or recurrent type I atrial flutter in patients age 18 or older. The BSC high power Cardiac Ablation Controllers and Accessories are indicated for use in conjunction with standard and high power catheters for cardiac ablation procedures.

Contraindications

Do not use this device:

- in patients with active systemic infection;
- · via the transseptal approach in patients with left atrial thrombus or myxoma; and
- via the retrograde approach in patients with aortic valve replacement.

Warnings

- · Before operating the device, read these warnings carefully:
- Peri-procedural anti-coagulation therapy is at the discretion of the physician, however, patients with a history of thromboembolic events may require therapeutic, anti-coagulation therapy, pre-, during and post-ablation to reduce the incidence of major complications.
- Because the long-term effects of exposure to ionizing radiation are unknown, careful consideration should therefore be given to pregnant women and pre-pubescent children.
- Pacemakers and implantable cardioverter/defibrillators can be adversely affected by RF signals. It is important to:
 - a. Retain temporary external sources of pacing available during ablation.
 - b. Reprogram the pacing system temporarily to minimum output or 000 mode to minimize risk of inappropriate pacing.
 - c. Exercise extreme caution during ablation when in close proximity to atrial or ventricular permanent pacing leads.
 - d. Perform complete pacing system analysis on all patients after ablation.
- Implanted cardioverter/defibrillators should be deactivated during delivery of RF power. Catheter entrapment within the heart or blood vessels is a possible complication of cardiac ablation procedures. The potential for
 catheter entrapment may be increased when the catheter is positioned in the chordae tendinae. The occurrence of this complication may necessitate surgical intervention and/or repair of injured tissue.
- Care must be taken to ensure that any equipment used in connection with the BSC catheters, be type CF, be defibrillation proof, meet EN-60601-1 electrical safety requirements, and comply with all local regulatory requirements for the specified intended use.
- In the presence of anticoagulation, there may be an increased risk of bleeding from all causes.
- If there is uncertainty regarding the patient's anticoagulation status or rhythm prior to the atrial flutter procedure, there should be a low threshold to perform a transesophageal echocardiogram (TEE) prior to the procedure to confirm absence of thrombus in the left atrial appendage.
- Do not pass the catheter through any prosthetic heart valve (mechanical or tissue), as this may cause entrapment of the catheter and/or damage to the prosthetic heart valve, resulting in valvular insufficiency and/or premature failure of the prosthetic valve.

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

BI AZER II

BLAZER II XP

Blazer[™] II XP Temperature Ablation Catheter (US DFU)

Precautions

- Observe these precautions, before using the device:
- Do not attempt to operate the Controller before thoroughly reading the appropriate BSC high power Cardiac Ablation Controller & Accessories Operator's Manual.
- The Blazer II XP Catheters are intended for use with the BSC high power Controllers and accessories only.
- The Blazer II XP Catheter is highly torqueable. Over-rotating the handle and catheter shaft may cause damage to the distal tip or catheter assembly. Do not rotate the handle and catheter shaft more than one and one-half times the full rotation (540 degrees). If the desired catheter tip position is not achieved, adjust the catheter's curve to disengage the catheter tip from the heart wall before resuming rotation of the handle and catheter shaft.
- Careful catheter manipulation must be performed in order to avoid cardiac damage, perforation, or tamponade. Catheter advancement should be done under fluoroscopic guidance.
- Do not use excessive force to advance or withdraw the catheter when resistance is encountered.
- Excessive bending or kinking of the catheter shaft may damage internal wires. Manual prebending of the distal curve can damage the steering mechanism and may cause patient injury.
- Cardiac ablation procedures should be performed only by physicians thoroughly trained in the technique of RF Powered Catheter Ablation in a fully-equipped electrophysiology laboratory.
- Unlike with conventional catheters, a sudden rise in system impedance is not an indication of coagulum formation. Therefore, to minimize coagulum, it is recommended that the catheter periodically be removed and the distal tip cleaned after each line of block.
- Adequate filtering must be used to allow continuous monitoring of the surface electrocardiograms (ECG) during radiofrequency power applications.
- When using Blazer II XP Catheters, it is required that two Dispersive Indifferent Patch (DIP) Electrode Pads satisfying the requirements of IEC 60601-1/IEC 60601-1/2 be used as the ablation return electrodes or skin burns may result. Use of only one DIP electrode will not allow the operator to fully access the higher power capabilities of the Controller.
- · Placement of the DIP electrodes on the thigh could be associated with the higher impedance, which could result in automatic RF power shut-off.
- During power delivery, the patient should not be allowed to come in contact with grounded metal surfaces.
- Apparent low power output or failure of the equipment to function correctly at normal settings may indicate faulty application of the DIP electrodes or failure of an electrical lead.
- Do not increase power before checking for obvious defects or misapplication.
- Regularly inspect and test re-usable cables and accessories.

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BLAZER II XP

BLAZER PRIME

CURRENT DENSITY

Blazer[™] II XP Temperature Ablation Catheter (US DFU)

Adverse Events

Potential Adverse Events

Potential adverse events (in alphabetical order), that may be associated with cardiac catheterization and ablation include, but are not limited to:

- allergic reaction (including anaphylaxis)
- angina
- arrhythmias
- arterial or pulmonary embolism
- arterial-venous fistula
- atrioventricular node damage (transient/permanent)
- back pain and/or groin pain
- cardiac perforation
- cardiac respiratory arrest
- catheter entrapment
- cerebral vascular accident
- complete heart block (transient/permanent)
- cerebral vascular accident
- chest pain/discomfort
- complications of sedative agents (e.g. aspiration pneumonia)
- death
- effusion (pericardial/pleural)
- hematoma/bruising
- hemoptysis
- hemorrhage
- hemothorax
- hypotension
- infection
- myocardial infarction
- nerve palsy or weakness
- pericarditis
- phrenic nerve damage/diaphragmatic paralysis
- pleurisy
- pneumothorax
- pulmonary edema
- pseudoaneurysm
- radiation exposure
- sinoatrial node damage
- skin burn (defibrillator/cardioverter/radiation)
- tamponade
- transient ischemic attack (TIA)
- valvular damage
- vasovagal reactions
- visual blurring

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BLAZER II XP

BLAZ

BLAZER PRIME CU

CURRENT DENSITY

COMPETITIVE INFO

Blazer Prime[™] HTD Temperature Ablation Catheters (US DFU)

Indication for Use*

When using the Blazer Prime HTD Catheter: The Boston Scientific Cardiac Ablation System is indicated for creating endocardial lesions during cardiac ablation procedures to treat arrhythmia.

Contraindications

The use of the device is contraindicated in patients with active systemic infection. The transseptal approach is contraindicated in patients with left atrial thrombus or myxoma, or interatrial baffle or patch. The retrograde transaortic approach is contraindicated in patients with active replacement.

Warnings

- Catheter ablation procedures present the potential for significant x-ray exposure, which can result in acute radiation injury as well as increased risk for somatic and genetic effects, to both patients and laboratory staff due to
 the x-ray beam intensity and duration of the fluoroscopic imaging. Catheter ablation should only be performed after adequate attention has been given to the potential radiation exposure associated with the procedure, and
 steps taken to minimize this exposure. Careful consideration must therefore be given for the use of the device in pregnant women.
- Care must be taken to ensure that any equipment used in connection with the BSC catheters, be type CF, be defibrillation proof, meet EN 60601-1 electrical safety requirements, and comply with all local regulatory requirements for the specified intended use.
- Patients undergoing AV nodal modification or ablation of septal accessory pathways are at risk for inadvertent AV block. It is advisable to use lower initial power in such patients and to monitor anterior conduction closely during RF power delivery.
- Pacemakers and implantable cardioverter/defibrillators can be adversely affected by RF signals. It is important to:
 - a. have temporary external sources of pacing available during ablation,
- b. temporarily reprogram the pacing system to minimum output or 000 mode to minimize risk of inappropriate pacing,
- c. exercise extreme caution during ablation when in close proximity to atrial or ventricular permanent pacing leads, and
- d. perform complete pacing system analysis on all patients after ablation.
- Implanted cardioverter/defibrillators should be deactivated during delivery of RF power.
- During a transaortic approach, adequate fluoroscopic visualization is necessary to avoid placement of the ablation catheter within the coronary vasculature. Catheter placement and RF power application within the coronary artery has been associated with myocardial infarction and death.
- · Patients undergoing left-sided ablation procedures should be closely monitored during the post-ablation period for clinical manifestations of infarction.
- The steerable ablation catheter is intended for single patient use only. Do not reprocess or reuse. Reuse can cause patient injury and/or the communication of infectious disease(s) from one patient to another.
- The use of catheters or cables with unprotected male pin connectors present a risk of electrical hazard. Inadvertent attachment of pin connectors to power supply sockets or connectors could result in electrocution of the
 patient or operator. Misconnection of the pins could also lead to inappropriate delivery of RF current through a band electrode. The users of component with unprotected male pin connectors must exercise extreme caution
 during device set-up to prevent patient or operator injury.
- Catheter entrapment within the heart or blood vessels is a possible complication of cardiac ablation procedures. The potential for catheter entrapment may be increased when the catheter is positioned in the vicinity of the chordae tendinae. The occurrence of this complication may necessitate surgical intervention and/or repair of injured tissues.

Precautions

- Before using, inspect for physical damage including electrical insulation on the cables and the catheter shaft. Replace damaged equipment.
- The Blazer Prime HTD Temperature Ablation Catheter is highly torqueable. Avoid overtorquing. Over-rotating the handle and catheter shaft may cause damage to the distal tip or catheter assembly. Do not rotate the handle and catheter shaft more than 1 1/2 full rotations (540°). If the desired catheter tip position is not achieved, adjust the catheter's curve to disengage the catheter tip from the heart wall, before resuming rotation of the handle and catheter shaft.
- Peri-procedural anticoagulation therapy is recommended for patients undergoing left-sided and transseptal cardiac procedures and should be considered for selected patients undergoing right-sided procedures.
- Careful catheter manipulation must be performed in order to avoid cardiac damage, perforation, or tamonade. Catheter advancement should be done under fluoroscopic guidance. Do not use excessive force to advance or withdraw the catheter when resistance is encountered.
- The sterile packaging and catheter should be inspected prior to use.
- It is recommended not to exceed thirty (30) radiofrequency power applications per catheter.

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BLAZER II BI AZER II HTD

BLAZER II XP

BLAZER PRIME

CURRENT DENSITY

COMPETITIVE INFO

Blazer Prime[™] HTD Temperature Ablation Catheters (US DFU)

Precautions (cont'd)

- The Boston Scientific Blazer Prime HTD Catheter is intended for use with the EPT-1000[™] Controller and accessories or the Maestro 3000[™] Controller and accessories only.
- Do not attempt to operate the BSC Cardiac Ablation System before thoroughly reading the Cardiac Ablation Controller Operator's Manual.
- The catheter impedance LED display of the Cardiac Ablation Controller should be continuously monitored during RF power delivery. If a sudden rise in impedance is noted, power delivery should be discontinued. The catheter should be removed and the distal tip of the catheter cleaned to eliminate any coagulum.
- Excessive bending or kinking of the catheter shaft may damage internal wires. Manual prebending of the distal curve can damage the steering mechanism and may cause patient injury.
- Cardiac ablation procedures should be performed only by physicians thoroughly trained in the techniques of radiofrequency powered catheter ablation in a fully equipped electrophysiology laboratory.
- Adequate filtering must be used to allow continuous monitoring of the surface electrocardiogram (ECG) during radiofrequency power applications.
- The long-term risks of protracted fluoroscopy have not been established. Careful consideration must therefore be given for the use of the device in prepubescent children.
- The long-term risks of lesions created by RF ablation have not been established. In particular, any long-term effects of lesions in proximity to the specialized conduction system or coronary vasculature are unknown.
 Furthermore, the risk/benefit in asymptomatic patients has not been studied.
- Read and follow the dispersive indifferent (DIP) electrode manufacturer's instructions for use; the use of DIP electrodes which meet or exceed IEC 60601-1/IEC 60601-1-requirements is recommended.
- · Placement of the DIP electrodes on the thigh could be associated with the higher impedance, which could result in automatic RF power shut-off.
- During power delivery, the patient should not be allowed to come in contact with grounded metal surfaces.
- The Cardiac Ablation Controller is capable of delivering significant electrical power. Patient or operator injury can result from improper handling of the catheter and DIP electrode, particularly when operating the device. During power delivery, the patient should not be allowed to come in contact with grounded metal surfaces.
- Apparent low power output or failure of the equipment to function correctly at normal settings may indicate faulty application of the DIP electrodes or failure of an electrical lead. Do not increase power before checking for obvious defects or misapplication.
- The risk of igniting flammable gases or other materials is inherent in the application of RF power. Precautions must be taken to restrict flammable materials from the area where the ablation procedures are performed.
- Electromagnetic interference (EMI) produced by the Cardiac Ablation Controller during the delivery of RF power may adversely affect the performance of other equipment.
- Regularly inspect and test re-usable cables and accessories. The instrument cables and adapter cables may be sterilized only up to ten times by ethylene oxide sterilization.
- Boston Scientific relies on the physician to determine, assess and communicate to each individual patient all foreseeable risks of the cardiac ablation procedure.

Adverse Events

The following adverse events are listed in descending order according to their clinical significance as determined by their severity and frequency (<1% unless otherwise noted with an asterisk). A total of 57 adverse events were observed in the 513 procedures performed during the clinical study.

- Cardiac/Vascular
- Death
- Cardiac Tamponade, Perforation, Pericardial Effusion
- Cerebral Vascular Accident
- Myocardial Infarction
- Endocarditis
- Pulmonary Edema
- Pulmonary Embolism, Venous Thrombus
- *Puncture Site Hematoma, Ecchymosis (2.1%)
- Aortic Valve Insufficiency/Wall Motion Abnormality
- Arrhythmic
- Permanent Atrioventricular Block
- Ventricular Fibrillation
- *Non-sustained Ventricular Tachycardia (1.6%)
- Conduction System Abnormalities
- *Atrial Fibrillation, Flutter, Tachycardia (2.5%)
- Pacemaker Failure-to-sense

ORDFRING

INFORMATION

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BLAZER II XP

BLAZER PRIME

CURRENT DENSITY

COMPETITIVE INFO

Blazer Prime[™] XP Temperature Ablation Catheter (US DFU)

Indication for Use*

The Boston Scientific Corporation Blazer Primer XP Catheter is indicated for use with the BSC high power Cardiac Ablation Controllers (the Maestro 3000TH Controller, the EPT-1000XPTH Controller, and the EPT-1000XPTH Cont

The BSC high power Cardiac Ablation Controllers and Accessories are indicated for use in conjunction with standard and high power catheters for cardiac ablation procedures.

Contraindications

Do not use this device:

- in patients with active systemic infection;
- via the transseptal approach in patients with left atrial thrombus or myxoma; and
- via the retrograde approach in patients with aortic valve replacement.

Warnings

Before operating the device, read these warnings carefully:

- Peri-procedural anti-coagulation therapy is at the discretion of the physician, however, patients with a history of thromboembolic events may require therapeutic, anti-coagulation therapy, pre-, during and post-ablation to reduce the incidence of major complications.
- · Because the long-term effects of exposure to ionizing radiation are unknown, careful consideration should therefore be given to pregnant women and pre-pubescent children.
- Pacemakers and implantable cardioverter/defibrillators can be adversely affected by RF signals. It is important to:
- a. Retain temporary external sources of pacing available during ablation.
 - b. Reprogram the pacing system temporarily to minimum output or 000 mode to minimize risk of inappropriate pacing.
 - c. Exercise extreme caution during ablation when in close proximity to atrial or ventricular permanent pacing leads.
 - d. Perform complete pacing system analysis on all patients after ablation.
- Implanted cardioverter/defibrillators should be deactivated during delivery of RF power. Catheter entrapment within the heart or blood vessels is a possible complication of cardiac ablation procedures. The potential for
 catheter entrapment may be increased when the catheter is positioned in the chordae tendinae. The occurrence of this complication may necessitate surgical intervention and/or repair of injured tissue.
- Care must be taken to ensure that any equipment used in connection with the BSC catheters, be type CF, be defibrillation proof, meet EN-60601-1 electrical safety requirements, and comply with all local regulatory
- requirements for the specified intended use.
 In the presence of anticoagulation, there may be an increased risk of bleeding from all causes.
- If there is uncertainty regarding the patient's anticoagulation status or rhythm prior to the atrial flutter procedure, there should be a low threshold to perform a transesophageal echocardiogram (TEE) prior to the procedure to confirm absence of thrombus in the left atrial appendage.
- Do not pass the catheter through any prosthetic heart valve (mechanical or tissue), as this may cause entrapment of the catheter and/or damage to the prosthetic heart valve, resulting in valvular insufficiency and/or premature failure of the prosthetic valve.

Precautions

Observe these precautions, before using the device:

- Do not attempt to operate the Controller before thoroughly reading the appropriate BSC high power Cardiac Ablation Controller & Accessories Operator's Manual.
- The Blazer Prime XP Catheters are intended for use with the BSC high power Controllers and accessories only.
- The Blazer Prime XP Catheter is highly torqueable. Over-rotating the handle and catheter shaft may cause damage to the distal tip or catheter assembly. Do not rotate the handle and catheter shaft more than one and one-half times the full rotation (540 degrees). If the desired catheter tip position is not achieved, adjust the catheter's curve to disengage the catheter tip from the heart wall before resuming rotation of the handle and catheter shaft.
- Careful catheter manipulation must be performed in order to avoid cardiac damage, perforation, or tamponade. Catheter advancement should be done under fluoroscopic guidance.
- Do not use excessive force to advance or withdraw the catheter when resistance is encountered.
- Excessive bending or kinking of the catheter shaft may damage internal wires. Manual prebending of the distal curve can damage the steering mechanism and may cause patient injury.
- Cardiac ablation procedures should be performed only by physicians thoroughly trained in the technique of RF Powered Catheter Ablation in a fully-equipped electrophysiology laboratory.
- Unlike with conventional catheters, a sudden rise in system impedance is not an indication of coagulum formation. Therefore, to minimize coagulum, it is recommended that the catheter periodically be removed and the distal tip cleaned after each line of block.
- Adequate filtering must be used to allow continuous monitoring of the surface electrocardiograms (ECG) during radiofrequency power applications.
- When using Blazer Prime XP Catheters, it is required that two Dispersive Indifferent Patch (DIP) Electrode Pads satisfying the requirements of IEC 60601-1/IEC 60601-1/2 be used as the ablation return electrodes or skin burns may result. Use of only one DIP electrode will not allow the operator to fully access the higher power capabilities of the Controller.
- Placement of the DIP electrodes on the thigh could be associated with the higher impedance, which could result in automatic RF power shut-off.
- During power delivery, the patient should not be allowed to come in contact with grounded metal surfaces.
- Apparent low power output or failure of the equipment to function correctly at normal settings may indicate faulty application of the DIP electrodes or failure of an electrical lead.
- Do not increase power before checking for obvious defects or misapplication.
- Regularly inspect and test re-usable cables and accessories.

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

INTRODUCTION

BLAZER II BLAZER II HTD

BLAZER II XP

BLAZER PRIME

CURRENT DENSITY

COMPETITIVE INFO

INFORMATION

🚺 8 of 9 🌔

Blazer Prime[™] XP Temperature Ablation Catheter (US DFU)

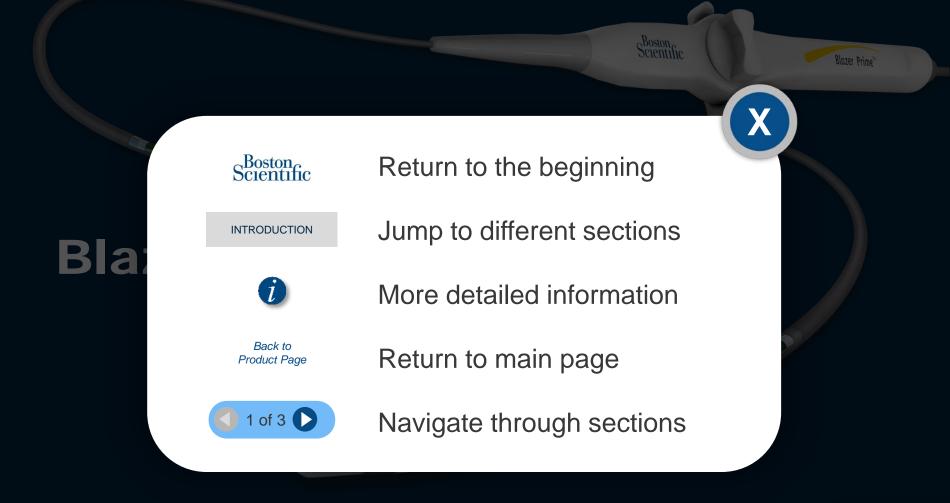
Adverse Events

Potential Adverse Events

Potential adverse events (in alphabetical order), that may be associated with cardiac catheterization and ablation include, but are not limited to:

- allergic reaction (including anaphylaxis)
- angina
- arrhythmias
- arterial or pulmonary embolism
- arterial-venous fistula
- atrioventricular node damage (transient/permanent)
- back pain and/or groin pain
- cardiac perforation
- cardiac respiratory arrest
- catheter entrapment
- complete heart block (transient/permanent)
- cerebral vascular accident
- chest pain/discomfort
- complications of sedative agents (e.g. aspiration pneumonia)
- death
- effusion (pericardial/pleural)
- hematoma/bruising
- hemoptysis
- hemorrhage
- hemothorax
- hypotension
- infection
- myocardial infarction
- nerve palsy or weakness
- pericarditis
- phrenic nerve damage/diaphragmatic paralysis
- pleurisy
- pneumothorax
- pulmonary edema
- pseudoaneurysm
- radiation exposure
- sinoatrial node damage
- skin burn (defibrillator/cardioverter/radiation)
- tamponade
- transient ischemic attack (TIA)
- valvular damage
- vasovagal reactions
- visual blurring

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015


INTRODUCTION

BLAZER II XP

BLAZER PRIME

CURRENT DENSITY

COMPETITIVE INFO

Scientific

© 2015 by Boston Scientific Corporation or its affiliates. All rights reserved. EP-268717-AB JUL2015

Blazer is a registered or unregistered trademark of Boston Scientific or its affiliates. All other trademarks are property of their respective owner:

Navigation Tips