Access the EDUCARE Cardiac Electrophysiology Online Learning Resource: https://educare.bostonscientific.eu/s/cardiac-electrophysiology
TABLE OF CONTENTS

Publication Listing by Topic

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety, Clinical Study Outcomes Data, Real-World Data, Lesion Characterization, Biomarkers</td>
<td>5</td>
</tr>
</tbody>
</table>

Case Studies

Mitral Isthmus Ablation with Pulsed-Field Technology: The Flower Power
- Adeliño, et al. | 6

Pulsed Field Ablation of Recurrent Right Atrial Tachycardia: Expanding the use of Electroporation Beyond Atrial Fibrillation
- Adeliño, et al. | 6

Pulsed Field Ablation as First-Line Treatment to Reduce Atrial Fibrillation Burden Documented by Pacemaker
- Chen, et al. | 6

Pulsed Field Ablation as First Line “Efficient” Rhythm Control for Atrial Fibrillation Complicated with Heart Failure: Proof of Concept
- Chen, et al. | 6

Transient Loss of Capture after Pulse Field Ablation due to Pacing Threshold Elevation
- Maury, et al. | 6

Pulsed Field Ablation in Common Inferior Pulmonary Trunk
- Mittal, et al. | 6

First in Human Pulsed Field Ablation to Treat Scar Related Ventricular Tachycardia in Ischemic Heart Disease: A Case Report
- Ouss, et al. | 6

Pulsed Field Ablation of the Cavotricuspid Isthmus Using a Multispline-Electrode Pulsed Field Ablation Catheter
- Ruwald, et al. | 6

Single Shot Electroporation of Premature Ventricular Contractions from the Right Ventricular Outflow Tract
- Schmidt, et al. | 6

Pulsed Field Ablation for Persistent Superior Vena Cava: New Solution for an Old Problem
- Tokohu, et al. | 6

First Pulse Field Ablation of an Incessant Atrial Tachycardia from the Right Atrial Appendage
- Urbanek, et al. | 6

Clinical Publications

2022

Findings from Repeat Ablation using High-Density Mapping after Pulmonary Vein Isolation with Pulsed Field Ablation
- Tohoku S, Chun J, Bordignon S, et al. | 7

Pulsed Field Ablation-Based Pulmonary Vein Isolation in Atrial Fibrillation Patients with Cardiac Implantable Electronic Devices: Practical Approach and Device Interrogation (PFA in CIEDs)
- Chen S, Chun J, Bordignon S, et al. | 7

Initial Experience with Pulsed Field Ablation for Atrial Fibrillation
- Magni F, Mulder B, Groenveld H, et al. | 8

Pulsed Field Ablation in Patients with Complex Consecutive Atrial Tachycardia in Conjunction with Ultra-High-Density Mapping: Proof of Concept
- Gunawardene M, Schaeffer B, Jularic M, et al. | 8

Pulsed-Field Ablation-Based Pulmonary Vein Isolation: Acute Safety, Efficacy and Short-Term Follow-Up in a Multi-Center Real World Scenario
- Lemoine, MD, Fink, T, Mencke, C, et al. | 9

Cerebral Safety After Pulsed Field Ablation for Paroxysmal Atrial Fibrillation
- Reinsch N, Futing A, Höwel D, et al. | 9

Catheter Ablation Induced Phrenic Nerve Palsy by Pulsed Field Ablation—Completely Impossible? A Case Series
- Pansera F, Bordignon S, Bologna F, et al. | 10
TABLE OF CONTENTS

Clinical Publications (Continued)

2022

Multi-National Survey on the Methods, Efficacy, and Safety on the Post-Approval Clinical use of Pulsed Field Ablation (MANIFEST-PF)
Ekanem E, Reddy VY, Boris Schmidt B, et al. ... 10

Pulsed Field Ablation for Pulmonary Vein Isolation: Real-World Experience and Characterization of the Antral Lesion Size Compared with Cryoballoon Ablation
Blockhaus C, Guelker J, Feyen L, et al. .. 11

Validation of a Multipolar Pulsed-Field Ablation Catheter for Endpoint Assessment in Pulmonary Vein Isolation Procedures
Kueffer T, Baldinger S, Servatius H, et al. ... 11

SS Study: Safe and Simple Single Shot Pulmonary Vein Isolation with Pulsed Field Ablation Using Sedation
Schmidt B, Bordignon S, Tohoku S, et al. ... 12

Characterization of Circumferential Antral Pulmonary Vein Isolation Areas Resulting from Pulsed-Field Catheter Ablation

First Experience with Pulsed Field Ablation as Routine Treatment for Paroxysmal Atrial Fibrillation
Fütting A, Reinsch N, Höwel D, et al. .. 13

Troponin Release after Pulmonary Vein Isolation using Pulsed Field Ablation compared to Radiofrequency and Cryoballoon Ablation

Pulsed Field Ablation Combined with Ultra-High-Density Mapping in Patients Undergoing Catheter Ablation for Atrial Fibrillation: Practical and Electrophysiological Considerations
Gunawardene M, Schaeffer B, Jularic M, et al. ... 13

Does pulsed field ablation regress over time? A quantitative temporal analysis of pulmonary vein isolation

Pulsed field ablation prevents chronic atrial fibrotic changes and restrictive mechanics after catheter ablation for atrial fibrillation

Pulsed Field Ablation of Paroxysmal Atrial Fibrillation: 1-Year Outcomes of IMPULSE, PEFCAT, and PEFCAT II
Reddy VY, Dukkipati SR, Neuzil P, et al. ... 15

How does the level of pulmonary venous isolation compare between pulsed field ablation and thermal energy ablation (radiofrequency, cryo, or laser)?

Pulsed field ablation selectively spares the oesophagus during pulmonary vein isolation for atrial fibrillation
Cochet H, Nakatani Y, Sridi-Cheniti S, et al. ... 16

Pulsed Field Ablation: A Promise that came true
Ante A, Breskovic T, Sikiric I. ... 17

2021

Pulsed Field Ablation in Patients with Persistent Atrial Fibrillation
Reddy VY, Anic A, Koruth J, et al. ... 18

Ostial dimensional changes after pulmonary vein isolation: Pulsed field ablation vs radiofrequency ablation

2019

Pulsed Field Ablation for Pulmonary Vein Isolation in Atrial Fibrillation
Reddy VY, Neuzil P, Koruth JS, et al. ... 19

2018

Ablation of Atrial Fibrillation With Pulsed Electric Fields: An Ultra-Rapid, Tissue-Selective Modality for Cardiac Ablation
Reddy VY, Koruth J, et al. ... 19
Preclinical Publications

2023

Electrophysiology, Pathology, and Imaging of Pulsed Field Ablation of Scarred and Healthy Ventricles in Swine

2022

Effect of Epicardial Pulsed Field Ablation Directly on Coronary Arteries
Higuchi S, Im S, Stillson C, et al.

Pulsed Field Ablation of Left Ventricular Myocardium in a Swine Infarct Model
Im S, Higuchi S, Lee A, et al.

2020

Pulsed Field Ablation Versus Radiofrequency Ablation: Esophageal Injury in a Novel Porcine Model

2019

Preclinical Evaluation of Pulsed Field Ablation: Electrophysiological and Histological Assessment of Thoracic Vein Isolation

Endocardial Ventricular Pulsed Field Ablation: A Proof-of-Concept Preclinical Evaluation

Abstracts

2021

2020

2019

2018

The overall FARAPULSE™ Pulsed Field Ablation System is intended for the **isolation of pulmonary veins in the treatment of paroxysmal atrial fibrillation**.

The FARAPULSE PFA System is intended for use in adult (18 ≤ age ≤ 75 years) cardiac arrhythmia patients, excluding pregnant or nursing patients.

This is the approved indication and FARAPULSE Pulsed Field Ablation System should not be used outside of this indication.

The safety and effectiveness of the FARAPULSE system outside the indicated use (per IFU) has not been established by the manufacturer.

FARASTAR IFU LBL1067 Rev. C, LBL1066 Rev. F
PUBLICATION LISTING BY TOPIC

Safety
- **Stenosis**: Kuroki, et al., *Ostial dimensional changes after pulmonary vein isolation: Pulsed field ablation vs radiofrequency ablation*
- **Cerebral**: Reinsch, et al., *Cerebral safety after pulsed field ablation for paroxysmal atrial fibrillation*
- **Esophageal**: Cochet, et al., *Pulsed field ablation selectively spares the oesophagus during pulmonary vein isolation for atrial fibrillation*
- **Phrenic Nerve**: Pansera, et al., *Catheter ablation induced phrenic nerve palsy by pulsed field ablation—completely impossible? A case series*

Clinical Study Outcomes Data
- Reddy, et al., *Pulsed Field Ablation of Paroxysmal Atrial Fibrillation: 1-Year Outcomes of IMPULSE, PEFCAT, and PEFCAT II*

Real-World Data
- Lemonie et al., *Pulsed-field ablation-based pulmonary vein isolation: acute safety, efficacy and short-term follow-up in a multi-center real world scenario*
- Ekanem et al., *Multi-national survey on the methods, efficacy, and safety on the post-approval clinical use of pulsed field ablation (MANIFEST-PF)*
- Schmidt et al., *5S Study: Safe and Simple Single Shot Pulmonary Vein Isolation With Pulsed Field Ablation Using Sedation*
- Kueffer, et al., *Validation of a Multipolar Pulsed-Field Ablation Catheter for Endpoint Assessment in Pulmonary Vein Isolation Procedures*
- Füting, et al., *First experience with pulsed field ablation as routine treatment for paroxysmal atrial fibrillation*
- Gunawardene, et al., *Pulsed Field Ablation in Patients with Complex Consecutive Atrial Tachycardia in Conjunction with Ultra-High-Density Mapping: Proof of Concept*
- Magni, et al., *Initial Experience with Pulsed Field Ablation for Atrial Fibrillation*
- Chen, et al., *Pulsed Field Ablation-Based Pulmonary Vein Isolation in Atrial Fibrillation Patients with Cardiac Implantable Electronic Devices: Practical Approach and Device Interrogation (PFA in CIEDs)*

Lesion Characterization
- Reddy, et al., *Pulsed Field Ablation of Paroxysmal Atrial Fibrillation: 1-Year Outcomes of IMPULSE, PEFCAT, and PEFCAT II*
- Nakatani et al., *Pulsed field ablation prevents chronic atrial fibrotic changes and restrictive mechanics after catheter ablation for atrial fibrillation*
- Kawamura et al., *Does pulsed field ablation regress over time? A quantitative temporal analysis of pulmonary vein isolation*
- Kawamura et al., *How does the level of pulmonary venous isolation compare between pulsed field ablation and thermal energy ablation (radiofrequency, cryo, or laser)?*
- Gunawardene et al., *Pulsed field ablation combined with ultra high-density mapping in patients undergoing catheter ablation for AF: Practical and electrophysiological considerations*
- Bohnen et al., *Characterization of circumferential antral pulmonary vein isolation areas resulting from pulsed-field catheter ablation*
- Blockhaus, et al., *Pulsed field ablation for pulmonary vein isolation: real world experience and characterization of the antral lesion size compared with cryoballoon ablation*
- Tohoku, et al., *Findings from Repeat Ablation Using High-Density Mapping after Pulmonary Vein Isolation with Pulsed Field Ablation*

Biomarkers
- Krisai et al., *Troponin release after pulmonary vein isolation using pulsed field ablation compared to radiofrequency and cryoballoon ablation*
CASE STUDIES

- **Adeliño, et al.,** *Mitral Isthmus Ablation with Pulsed-Field Technology: The Flower Power*
 Ablation beyond pulmonary vein isolation is outside the use of labeled indication of the FARAWAVE PFA Catheter with the FARAPULSE PFA System

- **Adeliño, et al.,** *Pulsed-Field Ablation of Recurrent Right Atrial Tachycardia: Expanding the Use of Electroporation Beyond Atrial Fibrillation*
 Ablation beyond pulmonary vein isolation is outside the use of labeled indication of the FARAWAVE PFA Catheter with the FARAPULSE PFA System

- **Chen, et al.,** *Pulsed Field Ablation as First-Line Treatment to Reduce Atrial Fibrillation Burden Documented by Pacemaker*
 PRECAUTION: Implantable pacemakers and implantable cardioverter/defibrillators may be adversely affected by irreversible electroporation current

- **Chen, et al.,** *Pulsed Field Ablation as First Line “Efficient” Rhythm Control for Atrial Fibrillation Complicated with Heart Failure: Proof of Concept*

- **Maury, et al.,** *Transient Loss of Capture after Pulse Field Ablation due to Pacing Threshold Elevation*
 PRECAUTION: Implantable pacemakers and implantable cardioverter/defibrillators may be adversely affected by irreversible electroporation current

- **Mittal, et al.,** *Pulsed Field Ablation in Common Inferior Pulmonary Trunk*

- **Ouss, et al.,** *First in Human Pulsed Field Ablation to Treat Scar Related Ventricular Tachycardia in Ischemic Heart Disease: A Case Report*
 Ablation beyond pulmonary vein isolation is outside the use of labeled indication of the FARAWAVE PFA Catheter with the FARAPULSE PFA System

- **Ruwald, et al.,** *Pulsed Field Ablation of the Cavotricuspid Isthmus using a Multispline-Electrode Pulsed Field Ablation Catheter*
 Ablation beyond pulmonary vein isolation is outside the use of labeled indication of the FARAWAVE PFA Catheter with the FARAPULSE PFA System

- **Schmidt, et al.,** *Single Shot Electroporation of Premature Ventricular Contractions from the Right Ventricular Outflow Tract*
 Ablation beyond pulmonary vein isolation is outside the use of labeled indication of the FARAWAVE PFA Catheter with the FARAPULSE PFA System

- **Tokohu, et al.,** *Pulsed Field Ablation for Persistent Superior Vena Cava: New Solution for an Old Problem*
 Ablation beyond pulmonary vein isolation is outside the use of labeled indication of the FARAWAVE PFA Catheter with the FARAPULSE PFA System

- **Urbanek, et al.,** *First Pulse Field Ablation of an Incessant Atrial Tachycardia from the Right Atrial Appendage*
 Ablation beyond pulmonary vein isolation is outside the use of labeled indication of the FARAWAVE PFA Catheter with the FARAPULSE PFA System
2022

Findings from Repeat Ablation using High-Density Mapping after Pulmonary Vein Isolation with Pulsed Field Ablation
Tohoku S, Chun J, Bordignon S. et al.

EUROPACE (November 2022), available at: https://doi.org/10.1093/eurpace/euac211

- In redo patients initially treated with FARAPULSE using the 5S strategy, the incidence of pulmonary vein (PV) reconnection was assessed (inclusive of learning curve).
- Among the 360 patients, 25 patients (19 paroxysmal) underwent a redo procedure in 6.1 ± 4 months.
- The PV durable isolation rate was 90.9% as assessed by high-density mapping.
- The mechanism of all but one atrial tachyarrhythmia was macro-reentry.
- The mean % of isolated posterior wall surface area was 72.7 ± 19.0%.
- There was a low rate of PV reconnection (9.1%) in redo patients and the unique features of the FARAWAVE catheter design and optimized workflow enabled wide antral lesion creation without regression over time.

KEY TAKEAWAY: Among 360 patients (25 redo patients) the PV durable isolation rate was 90.9% as assessed by high-density mapping. There was a low rate of PV reconnection (9.1%) in redo patients.

Pulsed Field Ablation-Based Pulmonary Vein Isolation in Atrial Fibrillation Patients with Cardiac Implantable Electronic Devices: Practical Approach and Device Interrogation (PFA in CIEDs)

*PRECAUTION: Implantable pacemakers and implantable cardioverter/defibrillators may be adversely affected by irreversible electroporation current

Journal of Interventional Cardiac Electrophysiology (November 2022), available at: https://doi.org/10.1007/s10840-022-01445-0

- A pilot patient cohort (n=20) underwent PFA ablation for AF (PVI) with different CIEDs.
- CIEDs included pacemaker, implantable cardioverter-defibrillators (ICD), or cardiac resynchronization therapy plus defibrillator (CRT-D).
- CIED pre- and post-PFA interrogation of the devices showed no significant alterations to the parameters or function of the CIEDs and no lead dislodgement.

KEY TAKEAWAY: 20 patients from a pilot cohort with different CIEDs (pacemaker, ICDs or CRT-D) underwent FARAPULSE PFA for PVI. CIED pre- and post-interrogation showed no significant alterations to the parameters or function of the device and no lead dislodgement.
Initial Experience with Pulsed Field Ablation for Atrial Fibrillation

Frontiers in Cardiovascular Medicine (November 2022), available at: https://doi.org/10.3389/fcvm.2022.959186

- 100 subjects (80% paroxysmal AF) underwent AF ablation with FARAWAVE.
- The learning curves of 2 operators (junior/senior) who performed >20 procedures showed no difference in procedure time, senior (46.9 ± 9.7 min) and junior (45.9 ± 9.9 min).
- The 2 complications that occurred were bleeding at the access site.

KEY TAKEAWAY: Among 100 patients who underwent AF ablation with FARAPULSE PFA, there were no differences in the learning curves of 2 operators (junior/senior) in terms of procedure times and acute PVI success rate.

Pulsed Field Ablation in Patients with Complex Consecutive Atrial Tachycardia in Conjunction with Ultra-High-Density Mapping: Proof of Concept

Journal of Cardiovascular Electrophysiology (Sept 2022), available at: DOI: 10.1111/jce.15713

- Fifteen patients with atrial tachycardia (AT) underwent high density mapping to ID critical sites for AT maintenance.
- FARAWAVE ablation was performed with 100% success, 63% terminated with the first application and 2 ATs in the right atrial requiring RF ablation.
- No procedure-related complications occurred.

KEY TAKEAWAY: This single-center, observational study showed how PFA of consecutive LAT in conjunction with UHDx mapping is feasible and safe. FARAWAVE ablation was performed with 100% success, 63% terminated with the first application and 2 ATs in the right atrial requiring RF ablation, and no procedure-related complications occurred.
Pulsed-Field Ablation-Based Pulmonary Vein Isolation: Acute Safety, Efficacy and Short-Term Follow-Up in a Multi-Center Real World Scenario
Lemoine, MD, Fink, T, Mencke, C, et al.
Clinical Research in Cardiology (Sept 2022), available at: https://doi.org/10.1007/s00392-022-02091-2

- 138 patients (62% persistent AF) from 2 centers were treated with FARAWAVE.
- Mean procedure time was 78 ± 22 min including pre- and post-procedure HD voltage mapping. FARAWAVE LA dwell time was 23 ± 9 min with a fluoroscopy time of 16 ± 7 min.
- There were 3 groin complications (2.2%), 1 pericardial tamponade (0.7%) and 1 transient ST-elevation (0.7%).
- The one-year freedom from recurrence rate was 90% in paroxysmal patients (n=47) and 60% in persistent AF patients (n=82).

KEY TAKEAWAY: In a real-world setting, the FARAWAVE catheter LA dwell time was 23 ± 9 min with a low number of procedural complications. The one-year freedom from recurrence rate was 90% in PAF patients and 60% in PERS AF patients.

Cerebral Safety After Pulsed Field Ablation for Paroxysmal Atrial Fibrillation
Heart Rhythm (Sept 2022), available at: https://doi.org/10.1016/j.hrthm.2022.06.018

- In 30 patients treated with FARAWAVE, Nation Institute of Heath Stroke Scale (NIHSS) scores were assessed 2-and 30-days post PVI. One day after PVI, DW-MRI and FLAIR imaging was done to document the occurrence of silent cerebral events (SCE)/silent cerebral lesions (SCL).
- NIHSS scores were 0 for all patients. Cerebral MRI scans were normal in 29/30 (97%) of patients. In one patient (3%), a single cerebral lesion was observed. 40-days post-procedure, a follow-up MRI cerebral scan showed complete lesion regression.

KEY TAKEAWAY: The rate of MRI detected asymptomatic thromboembolic SCE/SCL was 3%. The lesion completely regressed at 40 days and no patient showed neurological deficit.
Catheter Ablation Induced Phrenic Nerve Palsy by Pulsed Field Ablation—Completely Impossible? A Case Series

European Journal Case Report (Sept 2022), available at: https://doi.org/10.1093/ehjcr/ytac361

- Case series on three patients that had FARAWAVE PFA-induced phrenic nerve (PN) injury during PVI. Cases 1 & 3 had PAF w/out evidence of structural heart disease and case 2 had Pers AF and ischemic cardiomyopathy with preserved ejection fraction.
- Transient right hemidiaphragm palsy was seen during PFA delivery in the RSPV (Cases 1 and 2) and the RIPV (Case 3).
- The palsy lasted <1 min and was followed by spontaneous full recovery in all cases (Case 1, 40 sec, Cases 2 & 3 lasted a few seconds).

KEY TAKEAWAY: Transient PN palsy fully recovered rapidly suggesting PN hyperpolarization of neuronal cells or depletion of acetylcholine in the motoric endplate. Further studies are needed to understand the mechanism.

Multi-National Survey on the Methods, Efficacy, and Safety on the Post-Approval Clinical use of Pulsed Field Ablation (MANIFEST-PF)

Europace (August 2022), available at: https://doi.org/10.1093/europace/euac050

- The MANIFEST-PF registry was a retrospective survey of 24 centers with 90 operators, 1758 patients that assessed the real-world performance (use case, acute effectiveness, safety) of FARAPULSE.
- Procedure time was 65 min, fluoroscopy time was 13.7 min. There was a 99.9% mean acute PVI success rate.
- There were no esophageal complications reported, no phrenic nerve injury persisting beyond hospital discharge and no reported PV stenosis. There was a 1.6% rate of major complications, a 3.87% rate of minor complications and 0.46% rate of energy specific adverse events.
- Root cause analysis showed that most of the pericardial tamponades and stroke were attributable to catheter workflow and manipulation, independent of energy modality. Complications were plotted on a timeline, and it indicated an improvement in complication rate over time.

KEY TAKEAWAY: In a real-world use setting, FARAPULSE had a high rate of acute PVI, low procedure time and a low rate of PFA specific complications.
Validation of a Multipolar Pulsed-Field Ablation Catheter for Endpoint Assessment in Pulmonary Vein Isolation Procedures

UROPACE (June 2022), available at: https://doi.org/10.1093/europace/euac044

- In 56 patients undergoing PVI with FARAWAVE, the accuracy of FARAWAVE to detect residual PV connections was assessed with high-density mapping.
- Acute PVI was achieved in 100% of PVs.
- The accuracy of the PV assessment with FARAWAVE was 91%. In 14/213 (6.6% of veins), FARAWAVE incorrectly indicated residual PV conduction due to high-output pace-capture.
- Lowering the output to 5 V/1 ms reduced this observation to 0.9% (2/213) and increased the accuracy to 97%.
- FARAWAVE offered reliable endpoint assessment for PVI and lowering the pacing output increased the accuracy from 91% to 97%.
- At a median of 3.2 months, 3/56 (5.4%) underwent a redo procedure. The durable PV isolation rate was 10/12 (83%).

KEY TAKEAWAY: In 56 patients undergoing PVI with FARAPULSE PFA, FARAWAVE catheter offered reliable endpoint assessment for PVI and lowering the pacing output increased the accuracy from 91% to 97%. At a median of 3.2 months, 3/56 (5.4%) underwent a redo procedure. The durable PV isolation rate was 10/12 (83%).
Characterization of Circumferential Antral Pulmonary Vein Isolation Areas Resulting from Pulsed-Field Catheter Ablation

Europace (June 2022), available at: https://doi.org/10.1093/europace/euac111

- In 40 patients, pre- and post-procedure 20-pole circular mapping catheter voltage mapping was done to evaluate PV isolation and area of isolation.
- Isolation gaps were located most frequently in the anterior antral PV segments of the left PVs.
- Additional areas of isolation beyond the antral PV segments were found on the posterior wall and roof regions.

KEY TAKEAWAY: Proper catheter placement is important to achieve a circumferential antral PV lesion and to prevent posterior wall and roof ablation.
Troponin Release after Pulmonary Vein Isolation using Pulsed Field Ablation compared to Radiofrequency and Cryoballoon Ablation
Heart Rhythm (May 2022), available at: https://doi.org/10.1016/j.hrthm.2022.05.020

• Troponin T was measured in 60 patients one day before and the morning after PVI ablation with FARAWAVE, radiofrequency or cryoballoon ablation. No additional lesion sets were performed.
• Mean and median post-procedural Troponin levels were significantly higher in the PFA group compared to the RF and cryo groups with no significant difference between the RF and cryo groups.

KEY TAKEAWAY: Post-procedure Troponin T levels with PFA were 1.6x and 1.9x higher vs RF and Cryo, respectively. This may be a surrogate for larger lesions or more myocardial cell death.

First Experience with Pulsed Field Ablation as Routine Treatment for Paroxysmal Atrial Fibrillation
Füting A, Reinsch N, Höwel D, et al.
Europace (May 2022), available at: https://doi.org/10.1093/europace.euac041

• Single-center 30 patient study looking at phrenic nerve injury and high-density mapping pre- and post-ablation.
• Acute PVI rate was 100%, the median procedure time was 116 min and the FARAWAVE catheter dwell time was 29 min. There was no esophageal or phrenic nerve injury.
• 97% of patients were in sinus rhythm after 90 days.

KEY TAKEAWAY: FARAWAVE PFA for PVI in a real-world setting appeared to be safe and feasible with short FARAWAVE catheter left atrial dwell times.

Pulsed Field Ablation Combined with Ultra‐High‐Density Mapping in Patients Undergoing Catheter Ablation for Atrial Fibrillation: Practical and Electrophysiological Considerations
Journal of Cardiovascular Electrophysiology (March 2022), available at: DOI: 10.1111/jce.15349

• 20 consecutive patients underwent PVI with FARAWAVE. Additional ablations were performed off-label in a sub-set of patients. PFA lesion size and decrease in voltage were assessed with high-density voltage mapping.
• High density mapping showed PV reconnection in 5 cases (6.25%). Gaps were located at the anterior-superior PV ostia and were successfully closed with additional PFA. Voltage was significantly decreased following PFA with almost no complex electrogram fractionation at the lesion border zones.

KEY TAKEAWAY: High-density mapping for FARAWAVE PFA lesion showed wide, antral, circumferential lesion with significantly decreased atrial tissue voltage and little evidence of fraction in the lesion border zones.
2021

Does pulsed field ablation regress over time? A quantitative temporal analysis of pulmonary vein isolation

- Patients with paroxysmal atrial fibrillation underwent PVI using a biphasic PFA waveform delivered through a dedicated, variably deployable multielectrode basket/flower catheter.
- A comparison of voltage maps immediately after PFA and at a median of 84 days (interquartile range 69–90 days) later revealed that there was no significant difference in either the left and right-sided PV antral isolation areas or nonablated posterior wall area.
- The distances between low-voltage edges on the posterior wall were also not significantly different between the 2 time points.

KEY TAKEAWAY: In this study, the level of PV antral isolation after PFA with a multielectrode PFA catheter persists without regression.

Pulsed field ablation prevents chronic atrial fibrotic changes and restrictive mechanics after catheter ablation for atrial fibrillation

- Cardiac magnetic resonance was performed pre-ablation, acutely (<3 h), and 3 months post-ablation in 41 patients with paroxysmal atrial fibrillation (AF) undergoing pulmonary vein (PV) isolation with PFA (n = 18) or thermal ablation (n = 23, 16 radiofrequency ablations, 7 cryoballoon ablations).
- Tissue changes were more homogeneous after PFA than after thermal ablation, with no sign of microvascular damage or intramural hemorrhage. In the chronic stage, the majority of acute LGE had disappeared after PFA, whereas most LGE persisted after thermal ablation.
- The maximum strain on PV antra, the LA expansion index, and LA active emptying fraction declined acutely after both PFA and thermal ablation but recovered at the chronic stage only with PFA.

KEY TAKEAWAY: In this study, pulsed field ablation induces large acute LGE without microvascular damage or intramural hemorrhage. Most LGE lesions disappear in the chronic stage, suggesting a specific reparative process involving less chronic fibrosis.
Pulsed Field Ablation of Paroxysmal Atrial Fibrillation: 1-Year Outcomes of IMPULSE, PEFCAT, and PEFCAT II

- In 3 multicenter studies (IMPULSE, PEFCAT and PEFCAT II), paroxysmal atrial fibrillation patients underwent PVI using a basket and flower PFA catheter.
- Invasive remapping was performed at 2 to 3 months, and reconnected PVs were reisolated with PFA or radiofrequency ablation. After a 90-day blanking period, arrhythmia recurrence was assessed over 1-year follow-up.
- In 121 patients, acute PVI was achieved in 100% of PVs with PFA alone. PV remapping, performed in 110 patients at 93.0 ± 30.1 days, demonstrated durable PVI in 84.8% of PVs (64.5% of patients), and 96.0% of PVs (84.1% of patients) treated with the optimized biphasic energy PFA waveform.
- The 1-year Kaplan-Meier estimates for freedom from any atrial arrhythmia for the entire cohort and for the optimized biphasic energy PFA waveform cohort were 78.5 ± 3.8% and 84.5 ± 5.4%, respectively.

KEY TAKEAWAY: In this study, PVI with a “variable distal end morphology” PFA catheter results in excellent PVI durability and acceptable safety with a low 1-year rate of atrial arrhythmia recurrence.

How does the level of pulmonary venous isolation compare between pulsed field ablation and thermal energy ablation (radiofrequency, cryo, or laser)?

- In a clinical trial (NCT03714178), paroxysmal atrial fibrillation (PAF) patients underwent PVI with a multi-electrode pentaspline PFA catheter using a biphasic waveform, and after 75 days, detailed voltage maps were created during protocol-specified remapping studies.
- Comparative voltage mapping data were retrospectively collected from consecutive PAF patients who (i) underwent PVI using thermal energy, (ii) underwent reablation for recurrence, and (iii) had durably isolated PVs. The left and right PV antral isolation areas and non-ablated posterior wall were quantified.
- There was no significant difference between the PFA and thermal ablation cohorts in either the left- and right-sided PV isolation areas, or the non-ablated posterior wall area.

KEY TAKEAWAY: In this study, catheter-based PVI with the pentaspline PFA catheter creates chronic PV antral isolation areas as encompassing as thermal energy ablation.
Pulsed field ablation selectively spares the oesophagus during pulmonary vein isolation for atrial fibrillation
Cochet H, Nakatani Y, Sridi-Cheniti S, et al.

- Cardiac magnetic resonance (CMR) imaging was performed before, acutely (<3 h) and 3 months post-ablation in 41 paroxysmal AF patients undergoing PVI with PFA (N= 18, FARAPULSE) or thermal methods (N= 23, 16 radiofrequency, 7 cryoballoon).
- Oesophageal and aortic injuries were assessed by using late gadolinium-enhanced (LGE) imaging. Phrenic nerve injuries were assessed from diaphragmatic motion on intra-procedural fluoroscopy.
- Acutely, thermal methods induced high rates of oesophageal lesions (43%), all observed in patients showing direct contact between the oesophagus and the ablation sites. Oesophageal lesions were observed in no patient ablated with PFA (0%, P < 0.001 vs. thermal methods), despite similar rates of direct contact between the oesophagus and the ablation sites (P = 0.41). Acute lesions were detected on CMR on the descending aorta in 10/23 (43%) after thermal ablation, and in 6/18 (33%) after PFA (P = 0.52). CMR at 3 months showed a complete resolution of oesophageal and aortic LGE in all patients.

KEY TAKEAWAY: In this study, PFA does not induce any signs of oesophageal injury on CMR after PVI. Due to its tissue selectivity, PFA may improve safety for catheter ablation of AF.
Pulsed Field Ablation: A Promise that came true
Ante A, Breskovic T, Sikiric I.

Current Opinion in Cardiology (Jan 2021), available at: [DOI: 10.1097/HCO.0000000000000810]

- Pulsed field ablation is a nonthermal ablative modality that uses short living, strong electrical field created around catheter to create microscopic pores in cell membranes (electroporation). When adequately dosed/configured it shows a preference for myocardial tissue necrosis. Thus, it holds a promise to become a ‘perfect’ energy source for cardiac ablation to treat arrhythmias.
- First in human series using pulsed field ablation for atrial fibrillation ablation have been completed and data published for several platforms. Acute safety outcomes are similar across the platforms with exceptionally low rate of those complications that are typically reported for thermal ablation methods (esophageal injury, pulmonary vein stenosis, phrenic nerve palsy). Promising acute data on pulmonary vein isolation had been corroborated with satisfactory 1-year clinical follow-up for a single platform (i.e. FARAPULSE), whereas reports are pending for the rest. Research efforts are being expanded to a development of focal catheters, and therefore, pulsed field ablation application for ventricular arrhythmias.
- As the reports confirming its safety and efficacy build up, there seems to be no way that the promise of pulsed field ablation could end in a blind alley.

KEY TAKEAWAY: Promising intraprocedural PFA results for atrial fibrillation ablation had recently been supported by 1-year clinical follow-up data with the pleasing success rate. It is likely that PFA with a circumferential lesion catheter design will become the dominant modality for PVI in the foreseeable future. True focal PFA, with solid tip catheters is being investigated in animal labs while we still await FIH reports. This will provide ability to widen the application for ventricular arrhythmias ablation.
2020

Pulsed Field Ablation in Patients with Persistent Atrial Fibrillation

JACC (Sep 2020), available at: https://doi.org/10.1016/j.jacc.2020.07.007

- PersAFOne is a single-arm study evaluating biphasic, bipolar PFA using a multispline catheter for PVI and LAPW ablation to assess the safety and lesion durability of pulsed field ablation (PFA) for both PVI and LAPW ablation in persistent AF.
- In 25 patients, acute PVI (96 of 96 pulmonary veins) were 100% acutely successful with the multispline PFA catheter alone. Using the focal PFA catheter, acute cavotri cusp isthmus block was achieved in 13 of 13 patients.
- Post-procedure esophagogastroduodenoscopy and repeat cardiac computed tomography revealed no mucosal lesions or PV narrowing, respectively. Invasive remapping at 2 to 3 months demonstrated durable isolation (defined by entrance block) in 82 of 85 PVs (96%) and 21 of 21 LAPWs (100%) treated with the pentaspline catheter.

Ostial dimensional changes after pulmonary vein isolation: Pulsed field ablation vs radiofrequency ablation

- Data were analyzed from 4 paroxysmal atrial fibrillation ablation trials using either PFA or RFA.
- Baseline and 3-month cardiac computed tomography scans were reconstructed into 3-dimensional images, and the long and short axes of the PV ostia were quantitatively and qualitatively assessed in a randomized blinded manner.
- PV ostial diameters decreased significantly less with PFA than with RFA (% change; long axis: 0.9% ± 8.5% vs −11.9% ± 16.3%; P < .001 and short axis: 3.4% ± 12.7% vs −12.9% ± 18.5%; P < .001).
- PV narrowing/stenosis was present in 0% and 0% vs 12.0% and 32.5% of PVs and patients who underwent PFA and RFA, respectively.

KEY TAKEAWAY: In this study, unlike after RFA, the incidence and severity of PV narrowing/stenosis after PV isolation is virtually eliminated with PFA.
2019

Pulsed Field Ablation for Pulmonary Vein Isolation in Atrial Fibrillation

- Two trials were conducted to determine whether PFA allows durable pulmonary vein (PV) isolation without damage to collateral structures, in patients with paroxysmal atrial fibrillation.
- Ablation was performed using proprietary bipolar PFA waveforms: either monophasic with general anesthesia and paralytics to minimize muscle contraction, or biphasic with sedation because there was minimal muscular stimulation. No esophageal protection strategy was used. Invasive electrophysiological mapping was repeated after 3 months to assess the durability of PV isolation.
- 81 patients, all PVs were acutely isolated by monophasic (n=15) or biphasic (n=66) PFA. With successive waveform refinement, durability at 3 months improved from 18% to 100% of patients with all PVs isolated. Beyond 1 procedure-related pericardial tamponade no additional primary adverse events over the 120-day median follow-up, including: stroke, phrenic nerve injury, PV stenosis, and esophageal injury.

KEY TAKEAWAY: In this study, FARAPULSE PFA preferentially affected myocardial tissue, allowing facile ultra-rapid PV isolation with excellent durability (3 months remapping) and chronic safety.

2018

Ablation of Atrial Fibrillation With Pulsed Electric Fields: An Ultra-Rapid, Tissue-Selective Modality for Cardiac Ablation

- First acute clinical experience of atrial fibrillation ablation with PFA, both epicardial box lesions during cardiac surgery, and catheter-based PV isolation.
- PFA was performed using a custom over-the-wire endocardial catheter for percutaneous transseptal PV isolation, and a linear catheter for encircling the PVs and posterior left atrium during concomitant cardiac surgery.
- Catheter PV ablation was successful in 15 patients (100%) 57 PVs Using 3.26 lesions/PV and surgical box lesions were successful in 6 of 7 patients (86%) 2 lesions/patient. No complications.

KEY TAKEAWAY: In this study, ultrarapid PFA-based PV and LA ablation is both feasible and safe and is associated with excellent acute efficacy.
PRECLINICAL PUBLICATIONS

2023

Electrophysiology, Pathology, and Imaging of Pulsed Field Ablation of Scarred and Healthy Ventricles in Swine

Circulation: Arrhythmia and Electrophysiology (January 2023), available at: https://doi.org/10.1161/CIRCEP.122.011369

- 6 swine were infarcted to assess penetration of scar, risk of arrhythmias and lesion imaging evaluation.
- FARAPULSE PFA successfully penetrated scar without significant differences in the lesion depth of infarcted tissue (5.9 ± 1.0 mm) vs healthy (5.7 ± 1.3 mm) myocardium.
- In ungated QRS PFA applications, sustained ventricular arrhythmias requiring defibrillation occurred in 4/187 (2.1%) applications with zero occurring during gated applications.
- Dark-blood late-gadolinium-enhanced sequences allowed for improved endocardial border detection.

KEY TAKEAWAY: In the assessment of penetration of scar, risk of arrhythmias and lesion imaging evaluation, FARAPULSE PFA successfully penetrated scar without differences in lesion depth of infarcted swine tissue vs healthy myocardium.

2022

Effect of Epicardial Pulsed Field Ablation Directly on Coronary Arteries
Higuchi S, Im S, Stillson C, et al.

JACC: Clinical Electrophysiology (Dec 2022), available at: https://doi.org/10.1016/j.jacep.2022.09.003

- 4 swine, FARAWAVE lesions were delivered directly to the left anterior descending artery, left circumflex artery or normal myocardium.
- Angiography was performed to quantify the degree of coronary artery narrowing and histology was performed at 4 and 8 weeks.
- Acute luminal narrowing immediately after PFA was 47% which gradually resolved over 30 minutes.
- Epicardial lesions had a median depth of 4.1 mm and 87.5% of the arteries had minimal to mild stenosis via neointimal hyperplasia.

KEY TAKEAWAY: In 4 swine, angiography was performed to quantify the degree of coronary artery narrowing and histology after FARAWAVE lesions were performed. Acute luminal narrowing immediately after PFA was 47% which gradually resolved over 30 minutes, and epicardial lesions had minimal to mild stenosis via neointimal hyperplasia.
2022

Pulsed Field Ablation of Left Ventricular Myocardium in a Swine Infarct Model
Im S, Higuchi S, Lee A, et al.

JACC: Clinical Electrophysiology (June 2022), available at: https://doi.org/10.1016/j.jacep.2022.03.007

- 10 swine were infarcted to evaluate how PFA and RF perform in areas of myocardial scar.
- In myocardial scar, lesion depth was not different between the FARAWAVE or the FOCAL PFA catheter.
- In myocardial scar, lesion depth was significantly greater for PFA vs RF.

KEY TAKEAWAY: In a pre-clinical animal model, unlike RF, FARAPULSE PFA was able to effectively ablate surviving islands of myocardium in infarct-related ventricular substrate.

2020

Pulsed Field Ablation Versus Radiofrequency Ablation: Esophageal Injury in a Novel Porcine Model

Circulation: Arrhythmia and Electrophysiology (Jan 2020), available at: https://doi.org/10.1161/CIRCEP.119.008303

- A novel preclinical model was created to nonsurgical assess the response to esophageal injury. This was accomplished by delivering the energy source from within the inferior vena cava, against the esophagus (which was purposefully mechanically deviated towards the IVC).
- Biphasic pulsed field ablation induced no chronic histopathologic esophageal changes, whereas radiofrequency catheter ablation demonstrated a spectrum of esophageal lesions including esophageal ulcers, abscess, and fistula.

KEY TAKEAWAY: Dr. Koruth et al describe a novel porcine model simulating clinical conditions for esophageal damage caused by endocardial ablation. Six subjects treated with FARAPULSE PFA revealed no esophageal injury while radiofrequency ablation caused grossly observable and severe injury.
2019

Preclinical Evaluation of Pulsed Field Ablation: Electrophysiological and Histological Assessment of Thoracic Vein Isolation

Circulation: Arrhythmia and Electrophysiology (Dec 2019), available at: https://doi.org/10.1161/CIRCEP.119.007781

- In this study, the safety, efficacy, and durability of achieving catheter-based electrical isolation of PVI using optimized monophasic and biphasic PFA waveforms and describe procedural and histological characteristics of PFA in swine atrial tissue.
- Both waveforms created confluent myocardial lesions that demonstrated a myocardial-specific ablative effect.
- Biphasic PFA was more durable than monophasic PFA and radiofrequency ablation lesions.

KEY TAKEAWAY: Dr. Koruth et al compares lesion durability and collateral injury following preclinical pulmonary vein isolation with FARAPULSE PFA (monophasic and biphasic) and radiofrequency. Nerve and PV damage was observed only with radiofrequency ablation and biphasic PFA yielded optimal lesion durability among the three cohorts.

Endocardial Ventricular Pulsed Field Ablation: A Proof-of-Concept Preclinical Evaluation

EP Europace (Dec 2019), available at: https://doi.org/10.1093/europace/euz341

- Assessment of safety and feasibility of FARAPULSE PFA in swine ventricles with a prototype steerable endocardial catheter.
- Gross measurements, available for 28 of 30 ablation sites, revealed average lesion dimensions to be 6.5±1.7 mm deep and 22.6±4.1 mm, with a maximum depth and width of 9.4 mm and 28.6 mm respectively.
- In PFA lesions, fibrous tissue homogeneously replaced myocytes without overlying thrombus. When present in the lesion zone, nerve fascicles and vasculature were preserved.

KEY TAKEAWAY: Report on a series of porcine subjects treated with the novel FARAPULSE FARAFLEX focal PFA catheter. Ventricular tissue targeted for ablation demonstrated lesions with clinically relevant dimensions and spared collateral structures such as vasculature and nerves.
ABSTRACTS

2021

Cerebral safety after pulsed field ablation for symptomatic atrial fibrillation ablation
Reinsch N, Fueting AV, Höwel D, et al.

Pulsed field ablation for atrial fibrillation is safe for the bronchial system
Höwel D, Fueting AV, Reinsch N, et al.

Patient discomfort following pulsed field ablation for paroxysmal atrial fibrillation - an assessment of chest and groin pain using Numeric Rating Scale
Füting A, Neven K, Höwel D, et al.

Cardiac enzyme kinetics as market for myocardial damage after pulsed field ablation for paroxysmal atrial fibrillation

First real-world experience with pulmonary vein isolation using pulsed field ablation for paroxysmal atrial fibrillation
Neven K, Füting A, Höwel D, et al.

Pulsed field ablation for atrial fibrillation is safe for the esophagus
Höwel D, Fueting AV, Reinsch N, et al.

First insights of pulsed-field ablation based pulmonary vein isolation: a real world single-center experience
Lemoine M, Schleberger, Münkler P, et al.

Pulsed field ablation in patients undergoing catheter ablation for atrial fibrillation: initial experience

First real-world experience with pulmonary vein isolation using pulsed field ablation for paroxysmal atrial fibrillation
Neven K, Füting A, Höwel D, et al.

Pulsed Field Ablation For Paroxysmal Atrial Fibrillation Using An Optimized Biphasic Waveform: Recurrence Of Atrial Arrhythmias
Neuzil P, et al.
B-AB06-01, Heart Rhythm; May 2021, 18(8), S1-S540 (abstr)

Pulsed Field Ablation Of Left Ventricular Myocardium In A Swine Infarct Model
Sung II, et al.
B-AB03-03, Heart Rhythm; May 2021, 18(8), S1-S540 (abstr)
2021

How does the Level of Pulmonary Venous Isolation Compare Between Pulsed Field Ablation and Thermal Energy Ablation (Radiofrequency, Cryo or Laser)?
Kawamura I, et al.
AFS 2021-14, *J Cardiovasc Electrophysiolog.* 2021; 1-49

Electrolytic Effects from a Clinical Endocardial Pulsed Field Ablation System in a Benchtop Model: a Comparison of Gas Formation with Focal RF Ablation
Woods CE, et al.

Pulsed Field Ablation Using a Multielectrode Pentaspline Catheter: Clinical Outcomes with an Optimized Waveform
Reddy VY, et al.

Dielectrophoretic Red Blood Cell Fusion by Pulsed Electric Fields: Ex vivo and Porcine in vivo Experiments
Reddy VY, et al.
2020

PFA Preserves Atrial Mechanics After Catheter Ablation For Atrial Fibrillation
Nakatani Y, et al.
D-AB24-01, *Heart Rhythm*; May 2020, 17(5), S1-S622

Esophageal Injury On Cardiac Magnetic Resonance After Catheter Ablation For Atrial Fibrillation: Comparison Between Pulsed Field, Cryoballoon And Radiofrequency Techniques
Cochet H, et al.
D-AB24-06, *Heart Rhythm*; May 2020, 17(5), S1-S622

First-in-Human Experience with Cavotricuspid Isthmus Ablation Using a Focal PFA Catheter
Neuzil P, et al.
D-PO02-125, *Heart Rhythm*; May 2020, 17(5), S1-S622

One Year Clinical Outcomes Following PFA for Paroxysmal AF
Reddy VY, et al.
D-PO01-136, *Heart Rhythm*; May 2020, 17(5), S1-S622

Atrial Wall Changes On Cardiac Magnetic Resonance After PFA For Atrial Fibrillation
Cochet H, et al.
D-PO01-147, *Heart Rhythm*; May 2020, 17(5), S1-S622

Focal PFA For Linear Atrial Lesions-a Preclinical Feasibility Assessment
Kawamura I, et al.
D-PO01-150, *Heart Rhythm*; May 2020, 17(5), S1-S622

Acute Outcomes From The First Use of PFA for PV and Posterior Wall Ablation for Persistent AF
Reddy VY, et al.
D-PO01-170, *Heart Rhythm*; May 2020, 17(5), S1-S622

Best Abstract Award - PFA vs. RF: Esophageal Effects in a Novel Preclinical Model
Koruth J, et al.

Late Breaking Clinical Trials and First Report Investigations - First Report from PersAFOne: PFA to Treat Persistent AF with PVI Plus Posterior Wall Ablation
Reddy VY, et al.

Lesion Durability and Safety Outcomes of PFA in >100 PAF Patients
Reddy VY, et al.

Acute Experience with PFA for Typical Flutter
Anic A, et al.

Lesion Visualization of PFA by MRI in an Expanded Series of PAF Patients
Jais P, et al.

Do PFA Lesions Regress Over Time?
Kawamura I, et al.

AFS2020-39 - Ostial Dimensional Changes After PVI: PFA vs RFA
Kuroki K, et al.
2019

Safety of Pulmonary Vein and SVC Ablation Using Pulsed Electric Field Energy
Vlachos K, Takigawa M, Bourier F, et al.
B-PO03-114, Heart Rhythm; 15(5), S330-331 (abstr)

Pulmonary Vein Isolation with Biphasic Pulsed Field Ablation: A Pre-Clinical Comparison with Irrigated Radiofrequency Ablation

Comparison of Biphasic and Monophasic Pulsed Field Ablation in an Animal Model
AFS2019-26, J Cardiovasc Electrophysiolog. 2019;1-28 (abstr)

Pulsed Field Ablation for Pulmonary Vein Isolation in Humans: Endoscopic Observations of the Esophagus

Does Pulsed Field Ablation to Treat Atrial Fibrillation in Humans Cause Pulmonary Vein Stenosis?

Effect of Pulsed Field Ablation on the Phrenic Nerve During Pulmonary Vein Isolation: Pre-Clinical and Clinical Evaluation
2018

Acute Results of Superior Vena Cava and Pulmonary Vein Isolation Using Pulsed Electric Field Ablation in a Swine Model
B-PO02-004, Heart Rhythm; 15(5), S178-179 (abstr)

A catheter-based epicardial pulmonary vein isolation procedure: the Iowa approach
PO01-134, Heart Rhythm; 13(5), S98-S147 (abstr)

Preclinical safety of novel catheter-based system for intra-pericardial circumnavigation of the left atrium: first steps of the Iowa approach
PO03-142, Heart Rhythm; 13(5), S251-S339 (abstr)

Posterior left atrial ablation by epicardial electroporation in a porcine model
PO03-143, Heart Rhythm; 13(5), S251-S339 (abstr)

Investigation of pulsed electric fields for pulmonary vein and left atrial wall ablation in an acute and chronic porcine model

First human experience using pulsed electric fields for AF ablation and isolation of the pulmonary veins and posterior left atrium

Safety of pulsed electric field ablation in direct application to the porcine esophagus

Pulmonary Vein Isolation in Seconds: Pre-clinical Feasibility and Safety Using Pulsed Electric Field Energy in a Porcine Model
B-PO02-023, Heart Rhythm; 15(5), S187 (abstr)

Feasibility of synchronized ultra-short impulse high-voltage direct current technique in left atrial epicardial catheter-based ablation: pericardial atrial fibrillation ablation
PO05-104, Heart Rhythm; 11(5), S451-492 (abstr)
CAUTION: The law restricts these devices to sale by or on the order of a physician. Indications, contraindications, warnings, and instructions for use can be found in the product labelling supplied with each device or at www.IFU-BSCI.com. Products shown for INFORMATION purposes only and may not be approved or for sale in certain countries. This material not intended for use in France.

© 2023 Boston Scientific Corporation or its affiliates. All rights reserved.

EP-Y175305-AC