SpyGlass™ Direct Visualization System

FINAL RESULTS FROM LARGEST PROSPECTIVE INVESTIGATION OF PERORAL CHOLANGIOSCOPY

Published in *Gastrointestinal Endoscopy (GIE)*
October 2011

LEAD AUTHORS
Yang K. Chen, MD*
Mansour A. Parsi, MD
Douglas Pleskow, MD

*Deceased
study investigators

Yang K. Chen, MD, FASGE, AGAF, FACG
June 20, 1952 – Oct. 15, 2010

Peter D. Stevens, MD
Nov. 1, 1961 – Aug. 13, 2011

Two gifted physicians, two extraordinary men

For years, many of us at Boston Scientific had the privilege to know and work with Dr. Yang Chen and Dr. Pete Stevens, two gifted physicians with a passion for patient care and a deep commitment to clinical research, particularly in the area of developing and evaluating new endoscopic technologies. Along with this team of investigators, their pioneering work with single operator cholangioscopy helped establish and expand its use in gaining acceptance as a new standard of care in the management of biliary stricture and stone disease.

As gifted physicians, Dr. Chen and Dr. Stevens will be remembered for their vision, leadership and tireless dedication to improving patient care. As extraordinary men, they will be remembered for the strength of their relationships – as teachers, mentors, colleagues and friends – and their passion for life and learning.

Overall Study Results and Conclusions

HIGHLIGHTS OF RESULTS

Involving 15 U.S. and European centers and nearly 300 patients, this prospective study is the largest investigation of peroral cholangioscopy ever reported. In addition, in biopsy patients without tissue evidence of malignancy, follow-up was scheduled at 6 and 12 months unless a definitive diagnosis was established sooner.

Overall Study Results

<table>
<thead>
<tr>
<th>Overall procedural success rate</th>
<th>Diagnostic SOC procedures resulting in altered patient management</th>
</tr>
</thead>
<tbody>
<tr>
<td>89%</td>
<td>64%</td>
</tr>
</tbody>
</table>

Diagnostic SOC Results

<table>
<thead>
<tr>
<th>Biopsies adequate for histology</th>
<th>Cases rated good or excellent for the utility of SOC-directed biopsy</th>
<th>Sensitivity for intrinsic bile duct malignancies</th>
</tr>
</thead>
<tbody>
<tr>
<td>88%</td>
<td>75%</td>
<td>66%</td>
</tr>
</tbody>
</table>

Stone Therapy SOC Results

<table>
<thead>
<tr>
<th>Procedural success for stone management</th>
<th>Patients achieving complete stone clearance in one session</th>
</tr>
</thead>
<tbody>
<tr>
<td>92%</td>
<td>71%</td>
</tr>
</tbody>
</table>

Conclusions

Evaluation of bile duct disease and biliary stone therapy can be safely performed with a high success rate using the SpyGlass single-operator cholangioscopy (SOC) System. In this study, this technology demonstrated its adaptability for use by a wider group of skilled endoscopists and referral centers in the United States and Europe.

Abbreviations: EHL, electrohydraulic lithotripsy; IQR, interquartile range; SOC, single-operator cholangioscopy
Development of the SpyGlass™ System

History of Cholangioscopy

With over 300 articles published to date, it is well documented that direct visualization of the bile ducts by peroral cholangioscopy can be of value in the diagnosis of biliary abnormalities, obtaining biopsy specimens, and guiding stone therapy.1 And, although the first use of peroral cholangioscopy was reported in the 1970s, its adoption has been significantly hampered by the technical limitations of traditional cholangioscopes – fragility that resulted in high repair costs, limited steerability, poor irrigation capabilities and the need for two operators.

SpyGlass Direct Visualization System

The SpyGlass System was developed to overcome the limitations of traditional cholangioscopes and provide optically-guided therapeutics for targeted stricture and stone management. It is the first single-use, single-operator cholangioscopy (SOC) system with two dedicated irrigation channels, an optic channel and a 1.2mm diameter therapeutic channel – all within the 10fr (3.3mm) SpyScope™ Access and Delivery Catheter that also provides 4-way tip deflection to facilitate steerability and maneuverability through small ducts.

The irrigation channels of the SOC system permit irrigation fluid flow rates four- to five-fold those achievable through the working channel of conventional systems.1 In bench simulations with the SpyBite™ Biopsy Forceps loaded, the SOC system was successful twice as often in gaining access to target sites compared with a conventional choledochoscope limited to 2-way deflection.1

SpyGlass System Today

Since its launch in July 2007, the SpyGlass SOC System has been utilized in more than 30,000 patient procedures and has been installed in over 700 medical facilities worldwide. Clinical data have been published in more than 100 abstracts and articles in medical journals.*

Expanding Therapeutic Applications

Although this clinical registry focused on tissue acquisition and large stone management in the bile ducts, there are now many other documented applications of the SpyGlass System throughout the pancreatico-biliary system that continue to reaffirm its expanded utility and versatility.

Study Overview

Study Objectives

A feasibility study at two tertiary centers previously reported that this system can provide adequate samples for histological diagnosis and successfully facilitate stone therapy.1 The objective of this study (the largest ever to report on peroral cholangioscopy) was to confirm the utility of this system in more widespread clinical use.

Design/Setting/Patients/Limitations

This was a prospective clinical cohort study of 15 endoscopic referral centers in the U.S. and Europe, with 297 patients requiring evaluation of bile duct disease or biliary stone therapy. The study was observational in design with no control group.

Outcome Measurements/Endpoints

Procedural success was defined as the ability to: (1) visualize target lesions and, if indicated, collect biopsy specimens adequate for histological evaluation; or (2) visualize biliary stones and initiate fragmentation and removal.

Summary of Evaluation Criteria

All patients were evaluated before the SOC procedure and 48 to 72 hours and 1 month thereafter. At baseline, a medical history was taken and demographic characteristics and the indication for ERCP were recorded. After completion of ERCP, a diagnosis and patient management plan were assigned based on the cholangiographic findings associated with impressions (benign, malignant or indeterminate), and the indication for the immediately succeeding SOC procedure was noted.

BaseLine Patient Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>N – 297</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y, mean (SD)</td>
<td>62.9 (16.2)</td>
</tr>
<tr>
<td>Body mass index, kg . m^-2, mean (SD)</td>
<td>26.6 (5.8)</td>
</tr>
<tr>
<td>Sex, no. (%)</td>
<td>Female 152 (51.2)</td>
</tr>
<tr>
<td>Admission, no. (%)</td>
<td>Inpatient 107 (36.0)</td>
</tr>
<tr>
<td>Previous ERCP procedures, no. (%)</td>
<td>0 41 (13.8)</td>
</tr>
<tr>
<td>History of post-ERCP pancreatitis, no. (%)</td>
<td></td>
</tr>
<tr>
<td>Existent hepatobiliary & pancreatic conditions, * no. (%)</td>
<td>Cholangitis (< 4 wks before) 48 (16.2)</td>
</tr>
</tbody>
</table>

*SD, Standard deviation.

In 3 patients, both cholangitis and cirrhosis were present, and in one of them, chronic pancreatitis also. In no other case were there more than 2 reported pre-existing hepatobiliary or pancreatic conditions. No patient exhibited coagulopathy at baseline.

Based on objective evidence.
Overview of Results

SOC Diagnostic Cases

- 226 underwent single-operator cholangioscopy (SOC) for diagnostic purposes
 - 140 cases with biopsy (87% success rate)
 - 86 cases without biopsy (93% success rate)

Overview of Results

- 88% of SOC-directed biopsies obtained adequate tissue for histological evaluation
- 75% of investigators rated the utility of SOC-directed biopsy as Good or Excellent
- 64% of diagnostic SOC procedures altered clinical management of those patients (including changes to stent management in 69% of patients and the decision to perform surgery in 25%)

Disposition of Diagnostic Cases

297 total cases
- 226 SOC diagnostic cholangioscopy
- 71 ERCP diagnostic cholangioscopy
- 140 SOC diagnostic biopsies using SpyBite™

Benign inflammation forceps confirmed...

Targeted Sites of Interest – Biopsy

- Hilar area: 50 (35.7%)
- Common Hepatic Duct (CHD): 40 (28.2%)
- Common Bile Duct (CBD): 49 (35.3%)

Number of Biopsy Bites

<table>
<thead>
<tr>
<th>Description</th>
<th>Median no. of biopsies attempted</th>
<th>Median no. of biopsies successful</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 140 Biopsy patients*</td>
<td>4 (3-5)</td>
<td>3 (3-4)</td>
</tr>
<tr>
<td>*139 patients with available data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sensitivity Data for Intrinsic Malignancy

- 56% sensitivity for ERCP impression
- 84% sensitivity for SOC impression
- 66% sensitivity for SOC-directed biopsy histology

Conclusions

Evaluation of bile duct disease can be safely performed with a high success rate using the SpyGlass SOC System in diagnostic procedures. In this study, this technology demonstrated its adaptability for use by a wider group of skilled endoscopists and referral centers in the United States and Europe.

SOC Stone Therapy Cases

- 66 SOC-directed stone therapy
- 66 underwent EHL (electrohydraulic lithotripsy) or laser stone therapy

Overview of Results

- 92% success rate (61/66 patients) for stone therapy by EHL or laser lithotripsy*
- 85% of cases were rated Good or Excellent for quality of stone visualization by investigators
- 71% of patients achieved complete stone clearance in one session
- 11% had one or more stones identified only by SOC but not ERLPK**

Disposition of Stone Therapy Cases

297 total cases
- 66 SOC-directed stone therapy
- 66 underwent EHL (electrohydraulic lithotripsy) or laser stone therapy

Conclusions

Biliary stone therapy can be safely performed with a high success rate using the SpyGlass SOC System. In this study, this technology demonstrated its adaptability for use by a wider group of skilled endoscopists and referral centers in the United States and Europe.

*Procedural success for SOC-directed stone therapy was defined as visualization of biliary stones and initiation of stone fragmentation and removal

**The ability to detect stones missed by ERCP is consistent with the results of 3 earlier studies on peroral cholangioscopy and can be ascribed in large part to the quality of stone visualization with the SOC system. The quality of stone visualization also aided in accurately targeting stones, for instance, allowing precise placement of the EHL or laser probe on the surface of difficult stones.

Adverse Events

- 6.1% (4 patients) experienced a total of 5 serious ERCP- or SOC-related adverse events, all within the first 5 days after therapy
- The duodenal perforation was treated surgically, whereas the other 4 events resolved without sequelae.
SELECT BIBLIOGRAPHY OF PUBLISHED OR PRESENTED DATA

Stone Therapy Articles

Diagnostic Articles

Other Related Articles
Dwyer L K, Polavarapu N, Hood S, Sheard J, Sturgess R; Per oral cholangioscopy – systematic evaluation in clinical practice. *Digestive Diseases, Pathology*, University Hospital Aintree, Liverpool, United Kingdom.

2 Serious adverse events were defined as those leading to death, life-threatening or permanent illness or injury or intervention to prevent such illness or injury or hospital admission or prolongation of hospital stay.

CAUTION: The law, including Federal (USA) law, restricts this device to sale by or on the order of a physician. Indications, contraindications, warnings and instructions for use can be found in the product labeling supplied with each device. SpyGlass, SpyScope and SpyBite are unregistered or registered trademarks of Boston Scientific Corporation or its affiliates. All other trademarks are the property of their respective owners.