

Pacemaker implantations and new left bundle branch block

- a SCOPE 2 sub-analysis -

Potential conflicts of interest

Speaker's name: Costanza Pellegrini

✓ I do not have any potential conflict of interest to declare

Speaker's name: Michael Joner

☑ Dr. Joner reports personal fees from Abbott, Astra Zeneca, Biotronik, Boston Scientific, Edwards, Orbus Neich, ReCor, Shockwave and grants from Boston Scientific, Cardiac Dimensions, Edwards, Infraredx

The ACURATE neo™and neo2™ Valve System are CE-Marked. It is an investigational device in the US and restricted under federal law to investigational use only. Not a vailable for sale. © 2022 Boston Scientific Corporation or its affiliates. SH-1330206-AA

Why this study?

• incidences of left bundle branch block (LBBB) and permanent pacemaker implantation (PPI) vary considerably across different valve types

Boston Scientific - ACURATE neo

Medtronic - Evolut R

Edwards - SAPIEN 3

LBBB: 10.3 - 13% PPI: 3.8 - 21%

LBBB: 12.8 -25-9% PPI: 11.8 - 25%

LBBB: 7.5 - 20.5% PPI: 4.5 – 31%

increased 1 year mortality for LBBB and PPI

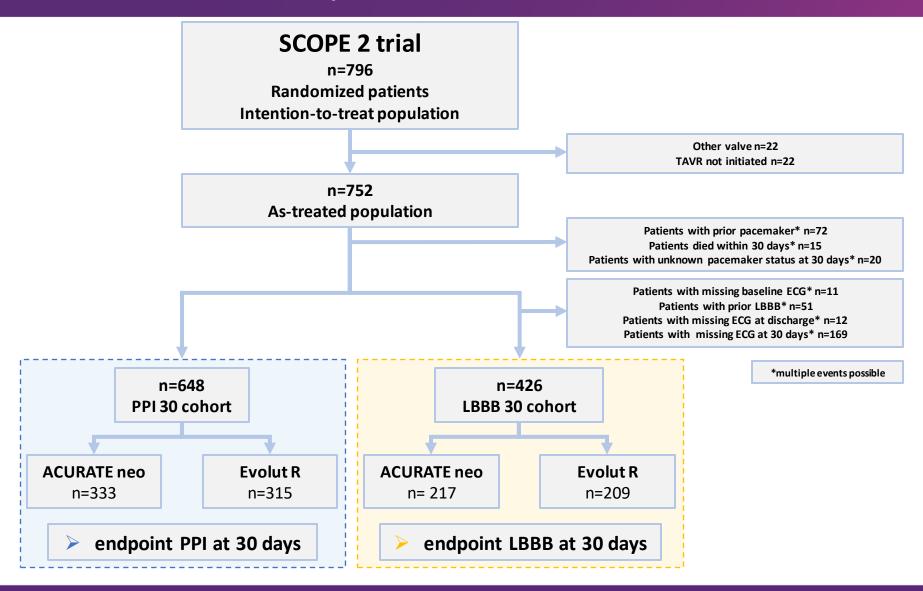
	NOP-LBBB		No NOP-LBBB		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	M-H, Fixed, 95% CI
Franzoni et al. 2013	8	63	26	175	
Nazif et al. 2014	21	121	190	1030	
Testa et al. 2013	42	224	117	594	
Carrabba et al. 2015	4	34	7	58	
Urena et al. 2014	22	79	167	589	
Chamandi et al. 2019	42	212	114	808	-
Lopez Aguilera et al. 2016	5	80	3	73	
Houthuizen et al. 2012	62	233	78	446	
Nazif et al. 2019	19	179	69	1000	
Schymik et al. 2015	41	197	57	437	
Houthuizen et al. 2014	30	111	56	365	
Jorgensen et al. 2019	30	237	22	447	
Total (95% CI)	1770			6022	*
Total events	326		906		
Heterogeneity: Chi ² = 21.43. Test for overall effect: Z = 4.); I ² = 49%		0.1 0.2 0.5 1 2 5 Favours NOP-LBBB Favours no NOP-LBBE
Faroux et al. 2020 Et	ır Heart	J, Au	ffret et d	al. 201	

	PPI		No PPI				Risk Ratio		
Study or Subgroup	Events	Total	Events	Total			M-H, Fixed, 95%		
Engborg et al. 2017	1	41	12	87	+-				
Walther et al. 2018	2	29	20	164	←				
Houthuizen et al. 2012	20	118	140	679					
D'Ancona et al. 2011	3	20	51	302		_	•		
Jrena et al. 2014	46	239	272	1317					
Mouillet et al. 2015	41	252	98	581					
Gonska et al. 2018	18	147	48	385					
Biner et al. 2014	6	58	18	172					
lorgensen et al. 2019	17	210	63	798					
adahunsi et al. 2016	114	651	1536	9134			-		
De Carlo et al. 2012	6	44	16	125					
Pereira et al. 2013	5	19	9	37			-		
Buellesfeld et al. 2012	19	98	37	207			-		
Chamandi et al. 2018	57	322	197	1307			+-		
Kawaguchi et al. 2015	10	28	40	132			-		
ujita et al. 2019	601	3459	2421	17413			-		
Nazif et al. 2015	45	173	374	1800			+		
Schymik et al. 2015	13	69	85	565			-		
Nadeem et al. 2018	32	146	81	526					
opez Aguilera et al. 2018	8	39	22	178			-		
Marzahn et al. 2018	36	145	96	711					
Total (95% CI)		6307		36620			•		
Total events	1100		5636						
Heterogeneity: Chi ² = 25.47				%		0.2	0.5 1		
Test for overall effect: $Z = 5$.	.27 (P < 0.	00001)					avours PPI Favou		

PCR

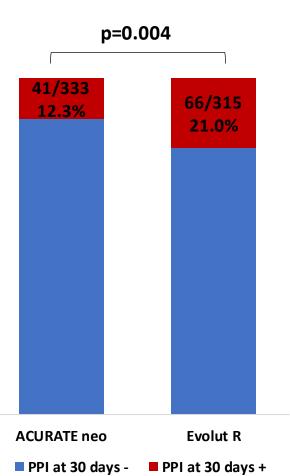
What did we study?

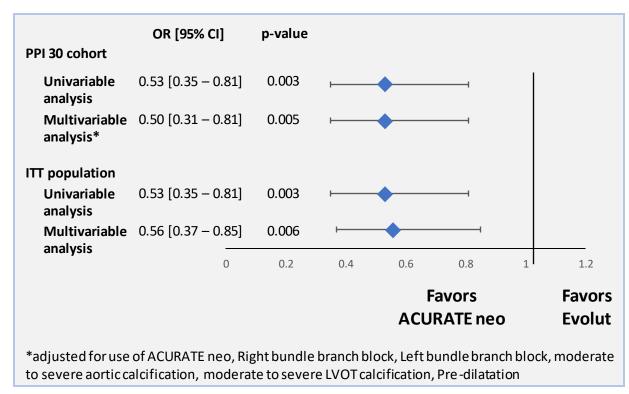
From the **powered, prospective, randomized SCOPE 2 clinical trial**, comparing the ACURATE neo and the CoreValve Evolut R valves, we performed a sub-analysis to ...


- assess independent predictors of new PPI after TAVI, focusing on clinical baseline characteristics, CT-assessed valve morphology and pre-existing electrocardiographic variables
- assess whether newly developed conduction abnormalities resolve or persist from discharge to follow-up at 30 days and at 1 year
- confirm from randomized controlled data whether new LBBB or PPI after TAVI have an impact on mortality at 1 year

The ACURATE neo™and neo2™ Valve System are CE-Marked. It is an investigational device in the US and restricted under federal law to investigational use only. Not available for sale. © 2022 Boston Scientific Corporation or its affiliates. SH-1330206-AA

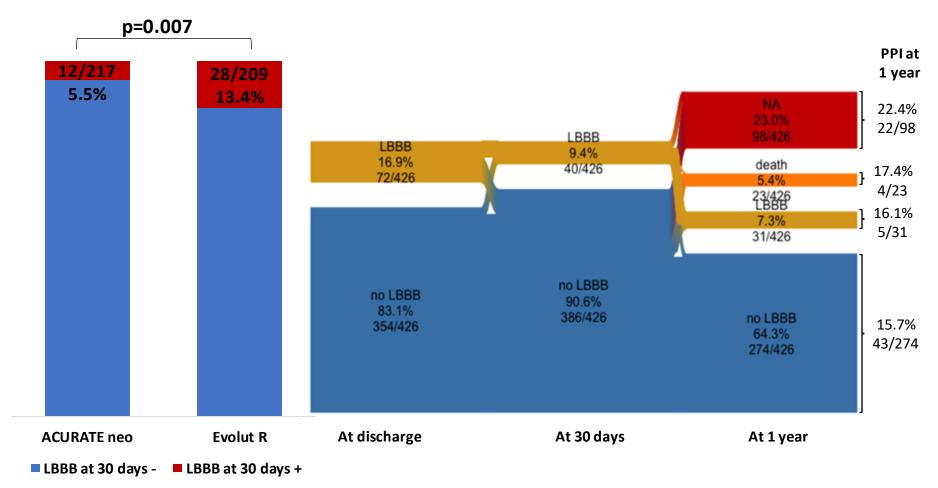
How was the study executed?





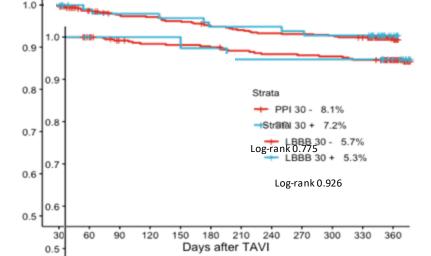
What are the essential results? (1)

 crude event rates of PPI at 30 days for valve type and multivariable analysis for risk of PPI at 30 days


Right bundle branch block OR 6.11 95% C I[3.19 - 11.73] < 0.001

What are the essential results? (2)

 crude event rates of LBBB at 30 days for valve type and evolution of LBBB over time

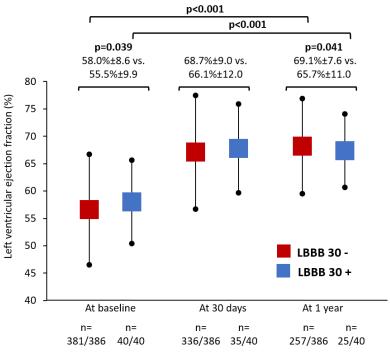


What are the essential results? (3)

 no impact on 1 year mortality for PPI or LBBB at 30 days

180 210 240

Days after TAVI


PI 30 - 8.1% 541 Number atstisk 501 494 489 485 484 482 479 378

PHBB 30 - 2.25.7% 3866 3735 3665 3644 36492 35892 35692 35591 354 90 352 90 350 71 282

LBBB 30 + 5.3% 40 38 38 38 37 36 36 36 36 36 36 36 26

Number at risk

 worse LV function at 1 year for patients with LBBB at 30 days

The ACURATE neo™and neo2™Valve System are CE-Marked. It is an investigational device in the US and restricted under federal law to investigational use only. Not a vailable for sale. © 2022 Boston Scientific Corporation or its affiliates. SH-1330206-AA

300

270

330

Why is this important?

 <u>Lack of data</u> on comparison of <u>latest generation</u> heart valves regarding new LBBB and PPI <u>from randomized clinical trials</u>

 by extending TAVI to lower risk and younger patients, it is paramount to <u>reduce post-procedural LBBB and PPI</u>, especially in light of the expected longer survival

 although contemporary metanalysis showed <u>association with</u> <u>increased mortality</u>, the current sub-study <u>could not</u> confirm this finding at 1 year

The ACURATE neo™and neo2™ Valve System are CE-Marked. It is an investigational device in the US and restricted under federal law to investigational use only. Not a vailable for sale. © 2022 Boston Scientific Corporation or its affiliates. SH-1330206-AA

The essentials to remember

- why? Randomized comparative evidence on LBBB and PPI with latest generation valves remain scarce
- what? Powered comparison on incidence, predictors and impact of LBBB and PPI at 30 days
- how? Sub-analysis from the randomized SCOPE 2 clinical trial
- what are the results? LBBB and PPI rates were lower in ACURATE neo compared to Evolut R. Use of the ACURATE neo was associated with decreased risk of PPI.
- why is this important? Patient-tailored valve selection should aim to minimize post-procedural complications and these results promote the use of the ACURATE neo in patients at high risk for conduction abnormalities

The ACURATE neo™and neo2™ Valve System are CE-Marked. It is an investigational device in the US and restricted under federal law to investigational use only. Not available for sale. © 2022 Boston Scientific Corporation or its affiliates. SH-1330206-AA

All trademarks are property of their respective owner.

CAUTION: The law restricts these devices to sale by or on the order of a physician. Indications, contraindications, warnings and instructions for use can be found in the product labelling supplied with each device. Products shown for INFORMATION purposes only and may not be approved or for sale in certain countries. This material not intended for use in France.

©2022 Boston Scientific Corporation or its affiliates. All rights reserved.

The ACURATE neo^{TM} and $neo2^{TM}$ Valve System are CE-Marked. It is an investigational device in the US and restricted under federal law to investigational use only. Not a vailable for sale. © 2022 Boston Scientific Corporation or its affiliates. SH-1330206-AA

PCRonline.com