Programming Overview

Step 1: Assess Chronotropic Competence

1. Chronotropic competence is defined by the Model of the Cardiac Chronotropic Response to Exercise.

Step 2: Prepare Calibration and Sensor Baseline

2. Calibration and sensor baseline preparation is necessary before implantation.

Step 3: Optimize Sensor Trending Data

Rate Adaptive Pacing

A motion-based accelerometer may not always detect when the patient is exercising, potentially resulting in inadequate rate response.

- **Riding a bicycle**
- **Walking a dog**
- **Holding a grandchild**
- **Carrying groceries**
- **Lifting weights**
- **Working in the garden**

RightRate™

RightRate™ is a physiologic minute ventilation sensor that is highly correlated with breathing.

1. The only sensor clinically proven to restore chronotropic competence.

VISIONIST™ X4

- **VISIONIST™ X4** is labeled for up to 13.1 years projected longevity even when RightRate is turned ON.

1. Chronotropic competence is defined by the Model of the Cardiac Chronotropic Response to Exercise.

2. Assumes: 2.0 mV/step; RA SENS; RV SENS/Lead No. 3414; 6 V pulse width, 100% BiV pacing, 15% atrial pacing; 1.2 ms pulse width.
Heart Rate Score is defined as the height of the tallest atrial histogram bin. A broader range of HR is typically better for the patient. Therefore, a lower HR Score is preferred.

Heart Rate Score was an independent predictor of mortality.\(^3\)

Impact of Rate Responsive Programming on survival based on Heart Rate Score

<table>
<thead>
<tr>
<th>HR Score</th>
<th>N</th>
<th>Hazard Ratio ± 95% CI</th>
<th>HR 60% CI</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><30%</td>
<td>398</td>
<td>0.96 ± 0.64 - 1.44</td>
<td>0.64</td>
<td>0.826</td>
</tr>
<tr>
<td>30-70%</td>
<td>4982</td>
<td>0.07 ± 0.01 - 1.01</td>
<td>0.04</td>
<td>0.674</td>
</tr>
<tr>
<td>≥70%</td>
<td>3468</td>
<td>0.66 ± 0.59 - 0.75</td>
<td>0.001</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Log-rank p-value < 0.001

RightRate™ Blended Sensor was shown to improve Heart Rate Score more than accelerometer alone.\(^5\)

Impact of Rate Responsive Programming on Heart Rate Score (among patients with baseline heart rate score of ≥70%)

- **P = 0.001**

Analysis of 501 patients from the LIFE Study

RightRate Blended sensor (MV+XL) resulted in:
- Heart Rate Score reduction of 18%.
- Converted almost twice as many patients to Heart Rate Score < 70% when compared to XL only.

\(^3\) Wilkoff et al., A Device Histogram Based Simple Predictor of Mortality Risk in ICD and CRT-D Patients. The Heart Rate Score. PACE 2017.

LATITUDE™ analysis of 67,929 CRT-D patients

Patients with a HR Score ≥ 70 had a 43% 5-year survival rate.

Patients with a HR Score < 30 had a 68% 5-year survival rate.

LATITUDE™ analysis of 6,164 patients

For patients with Heart Rate Score > 70, switching to DDDR was associated with improved mortality.

Patients with baseline Heart Rate Score > 70% significantly improved their Heart Rate Score with DDDR (from 88±9% to 78±15%; P<0.001).
