

Post-market evaluation of a fully repositionable and retrievable aortic valve in 500 patients treated in routine clinical practice: interim results from the RESPOND study

Professor Volkmar Falk, MD

Klinik für Herz-Thorax-Gefässchirurgie, Deutsches Herzzentrum Berlin, Germany

Thomas Modine, MD, PhD; Stephen Brecker, MD; Vinayak Bapat, MD; Ulrich Gerckens, MD; Peter Wenaweser, MD; Karl E. Hauptmann, MD; Francesco Bedogni, MD; Mika Laine, MD; Nikos Werner, MD; Peter Boekstegers, MD; Anna Sonia Petronio, MD; Stephan Kische, MD, PhD; Dominic J. Allocco, MD; Keith D. Dawkins, MD; Nicolas M. Van Mieghem, MD, PhD

on behalf of the RESPOND Investigators

Conflict of Interest Disclosure

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Professor Volkmar Falk, MD

Affiliation/Financial Relationship

Institutional Grant/Research Support

Company

- Boston Scientific
- Phillips
- Heartware
- Berlin Heart
- Biotronik

The RESPOND study is sponsored and funded by Boston Scientific Corporation.

The LOTUS™ Valve

Bovine
Pericardium in
Nitinol Frame

Adaptive Seal

Radiopaque Marker

To aid precise positioning

- Controlled mechanical expansion
- Valve functions early in deployment to provide hemodynamic stability
- Valve is fully repositionable
 & retrievable throughout the entire deployment process
- Adaptive seal conforms to irregular anatomic surfaces to minimise paravalvular leak

Study Design

DESIGN

- Prospective, single arm, multicentre, observational post market study
- Up to 60 centres in Europe, Asia-Pacific, and South America
- Available valve sizes: 23mm, 25mm, & 27mm (for native annulus sizes ≥20mm to ≤27mm)
- Follow-up at discharge, 30 days, and annually 1–5 years

PATIENTS

- All TAVI patients at each site selected to receive a Lotus Valve were evaluated for enrolment
- No protocol-specific inclusion/exclusion criteria

INDEPENDENT DATA ASSESSMENTS

- Core Lab review of baseline, discharge, & 1-year echo data
- Death and stroke assessed by an Independent Medical Reviewer (IMR)
- → 100% monitoring of all VARC-2 safety events

Endpoints

Primary Endpoint

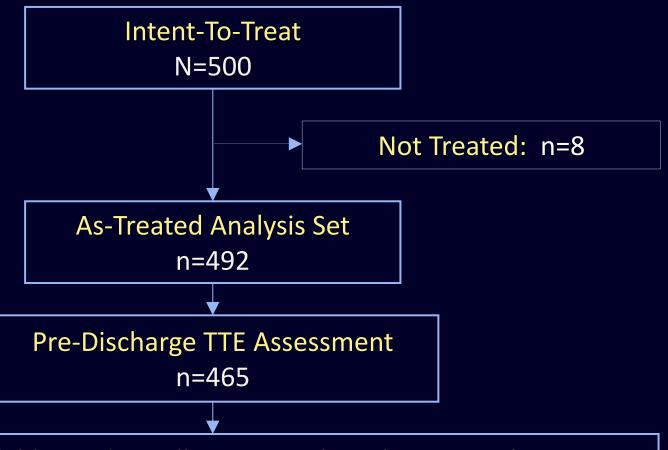
- All-cause mortality at 30 days and 1 year after the implant procedure
 - Mortality at 30 days will be compared to a performance goal

Secondary Endpoints

- Safety composite of all-cause mortality and disabling stroke at 30 days and 1 year
- In-hospital mortality
- Clinical efficacy composite at 30 days per VARC-2
- Time-related valve safety composite at 1 year per VARC-2.
- Grade of paravalvular aortic valve regurgitation pre-discharge
 - Moderate and severe paravalvular aortic valve regurgitation (by echocardiography) will be compared to a performance goal

Enrollment

RESPOND


500 Patients Between May 2014 & June 2015

Sabine Bleiziffer	Patients	Peter Wenaweser	Patients	Stephan Kische	Patients
Deutsches Herzzentrum Muenchen Munich, Germany	62	University Hospital Bern Bern, Switzerland	18	Vivantes Klinikum im Friedrichshai Berlin, Germany	n 8
David Hildick-Smith Royal Sussex County Hospital Brighton, United Kingdom	52	Mika Laine University of Helsinki Meilahti Hospital Helsinki, Finland	14	Antonio Colombo Fondazione Centro San Raffaele Milan, Italy	6
Jochen Wöhrle Universitaetsklinikum Ulm Ulm, Germany	52	Francesco Bedogni Istituto Clinico S, Ambrogio S.p.A. Milan , Italy	14	Sanjeevan Pasupati Waikato Hospital Waikato, New Zealand	5
Nicolas Van Mieghem Erasmus Medical Center Rotterdam, the Netherlands	46	Karl Eugen Hauptmann Krankenhaus der Barmherzigen Brueder Trier, Germany	13	Raul Moreno Hospital La Paz Madrid, Spain	5
Daniel J. Blackman The General Infirmary Leeds, United Kingdom	38	Nikos Werner University KH Bonn Bonn, Germany	12	Jan Kovac Glenfield Hospital Leicester, UK	4
Mohamed Abdel-Wahab Segeberger Kliniken GmbH Bad Segeberg, Germany	32	Anna Sonia Petronio Azienda Ospedaliero Universitaria Pisana Pisa, Italy	9	Stephen Brecker St. Georges Hospital London, UK	4
Axel Linke Herzzentrum Universitaet Leipzi Leipzig, Germany	g 30	Julinda Mehilli Klinkum Grosshadern Siegburg, Germany	8	Christoph Nienaber University of Rostock Rostock, Germany	3
Ulrich Gerckens Gemeinschaftskrankenhaus Bor GmbH Bonn, Germany	n 24	Saib Khogali New Cross Hospital Wolverhampton, UK	8	Mariano Larman Policlinica Guipuzcoa San Sebastian, Spain	2
Øyvind Bleie Haukeland University Hospital Bergen, Norway	21	Peter Boekstegers Helios Klinikum Siegburg, Germany	8	Florian Krackhardt Charite Campus Virchow Klinikum Berlin, Germany	2

Study Flow

RESPOND

500-Patient Interim Analysis

Patients With Available 30-day Follow-up or Clinical Event Within 30 Days 96.6% (483/500)

Baseline Characteristics

500-Patient Interim Analysis

Comorbidities & Baseline Scores

Age (Years)	80.7 ± 6.6 (492)	NYHA Class III or IV	65.2% (321/492)
Gender (Female)	51.2% (252/492)	EuroSCORE 2011 (%)	8.9 ± 9.1 (457)
Diabetes, treated	23.1% (113/490)	STS Score (%)	$6.7 \pm 8.2 (414)$
Baseline PPM	13.0% (64/492)	Katz Index (frail if <6)	$5.7 \pm 0.8 (256)$

Echocardiographic Measurements (Core Lab Assessment)

AVA (cm²)	0.7 ± 0.2 (446)	LVEF (%)	50.2 ± 10.4 (373)
MR (mod/severe)	11.2% (53/473)	Mean gradient (mmHg)	38.2 ± 16.1 (463)
AR (mod/severe)	7.8% (37/473)	Peak gradient (mmHg)	62.0 ± 24.9 (463)

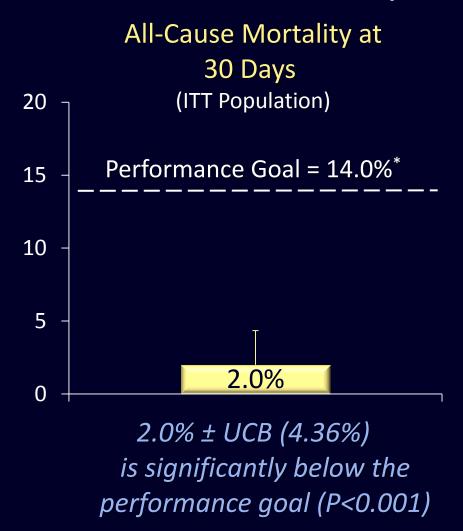
Indications for TAVI (Site-Reported)

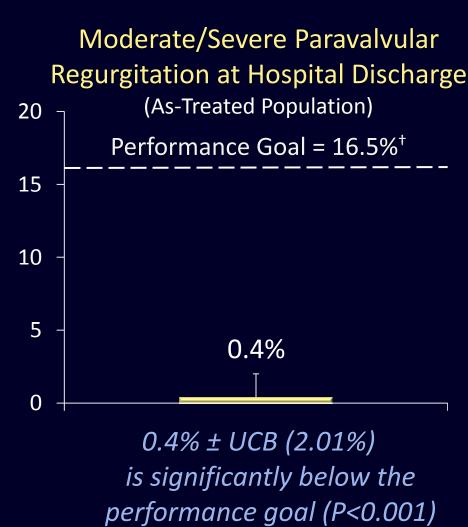
Native valve aortic stenosis	99.0% (487/492)
Tricuspid aortic valve stenosis	95.5% (470/492)
Bicuspid aortic valve stenosis	3.5% (17/492)
Low flow/low gradient	3.5% (17/492)
Lotus in failing prosthetic valve	0.8% (4/492)

Procedural Characteristics

RESPOND

	As-Treated (N=492)
Valve size implanted	
23mm	26.2% (129/492)
25mm	40.0% (197/492)
27mm	33.5% (165/492)
Vascular Access Site	
Transfemoral	97.4% (479/492)
Subclavian	1.2% (6/492)
Transaortic	1.4% (7/492)
No balloon valvuloplasty performed	41.4% (197/476)
Conversion to open heart surgery	0% (0/492)
Unplanned use of cardiopulmonary bypass	0% (0/492)


Device Success – VARC 2 Metrics



	As-Treated (N=492)
No procedural mortality	100% (492/492)
Correct positioning of one valve in proper location	99.6% (490/492)
Mean aortic valve gradient <20 mmHg	97.2% (446/459)
Peak velocity <3 m/s	96.9% (445/459)
No moderate/severe prosthetic valve regurgitation	99.6% (463/465)

Primary & Key Secondary Endpoints

 $^{^{}st}$ Based on an expected rate of 10% (based on literature review) plus a test margin of 4%. Intent-to-treat population.

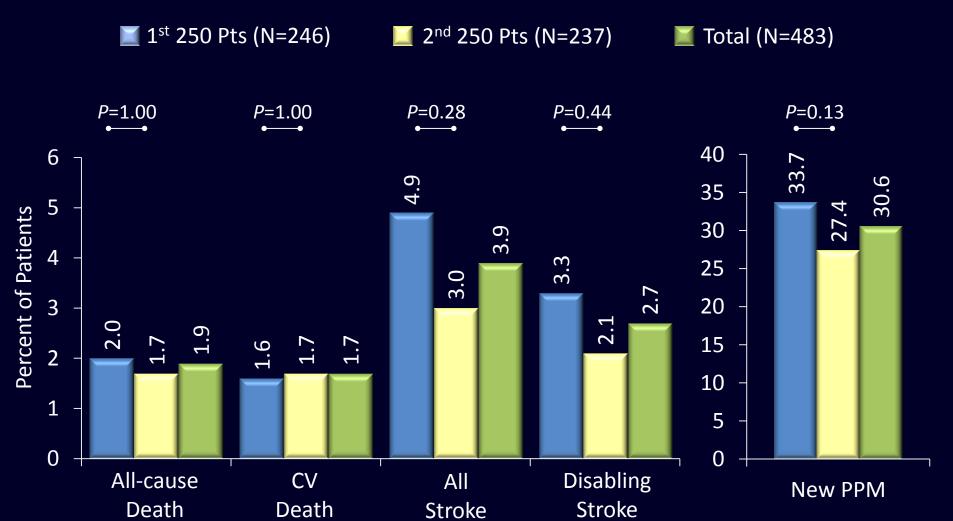
[†] Based on an expected rate of 16.5% from the FRANCE 2 registry

P values are from the one-sample z test.

Safety Endpoints – Periprocedural

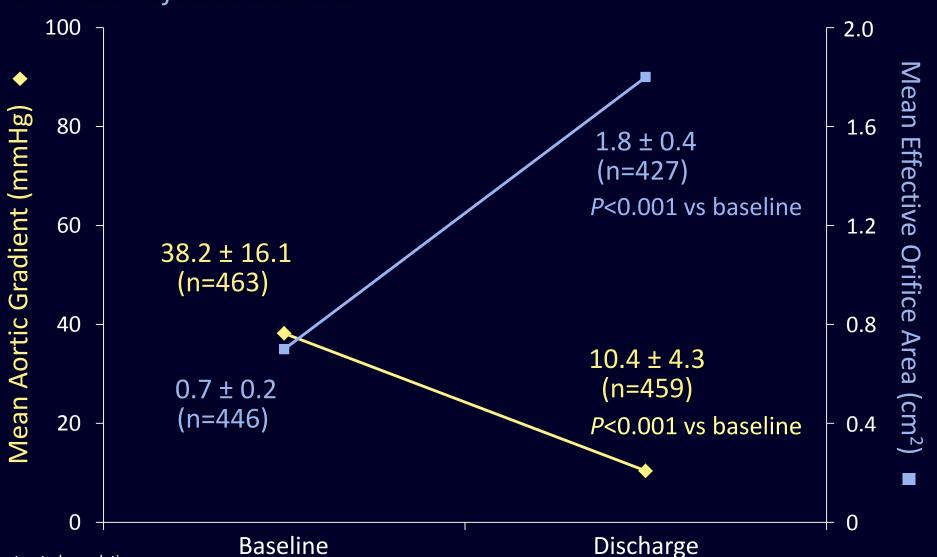
500-Patient Interim Analysis

Major vascular complications	1.6% (8/492)
Periprocedural myocardial infarction	0.2% (1/492)
Coronary obstruction	0.2% (1/492)
Cardiac tamponade	0.4% (2/492)
Valve migration	0% (0/492)
Valve embolisation	0.2% (1/492)
Ectopic valve deployment	0.2% (1/492)
TAV-in-TAV deployment	0.2% (1/492)
Mitral apparatus damage	0.2% (1/492)
Ventricular septal perforation	0% (0/492)

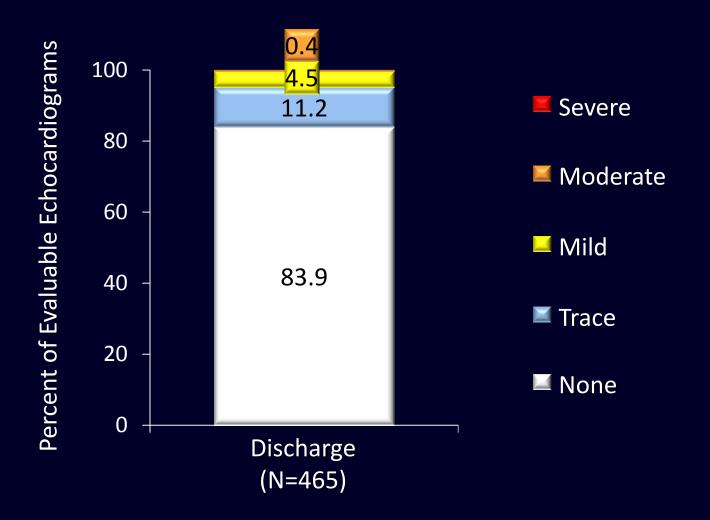

As-treated population.

Safety Endpoints at 30 Days

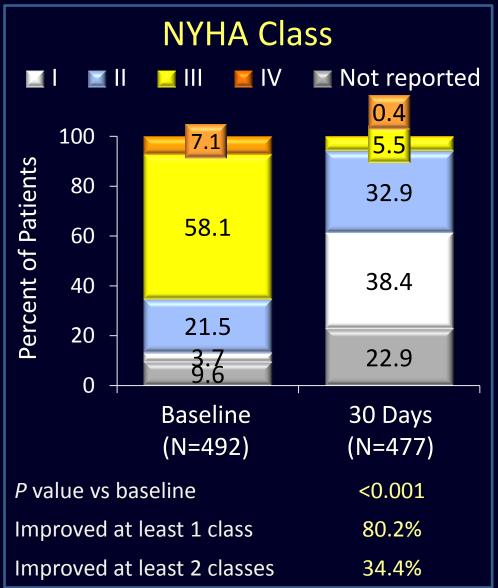
All-cause mortality	1.9% (9/483)
Cardiovascular mortality	1.7% (8/483)
All stroke	3.9% (19/483)
Disabling stroke	2.7% (13/483)
Life-threatening or disabling bleeding	1.7% (8/483)
Myocardial infarction (>72h post-procedure)	0.2% (1/483)
Acute kidney injury (Stage 2 or 3)	1.7% (8/483)
Repeat procedure for valve-related dysfunction	0% (0/483)
Valve- or CHF-related repeat hospitalisation	0.8% (4/483)
Newly implanted permanent pacemaker	30.6% (148/483)
Pacemaker dependent at 30 days (site-reported)	36.5% (54/148)

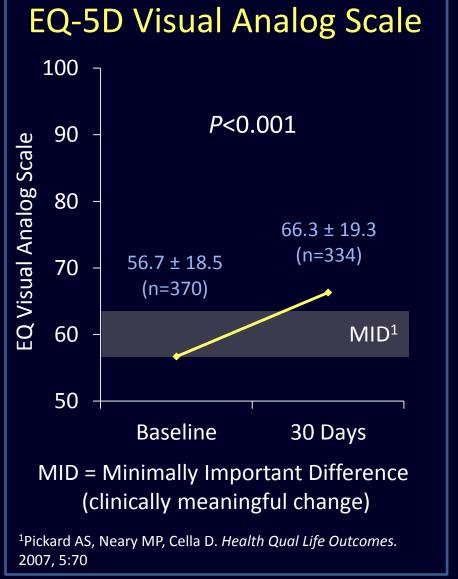

Principal Safety Results by 1st or 2nd 250 Pts RESPOND

Mean Aortic Gradient & EOA


500-Patient Interim Analysis Core-Lab Adjudicated Data

Paravalvular Aortic Regurgitation


500-Patient Interim Analysis
Core-Lab Adjudicated Data



NYHA Functional Class & Quality of Life

500-Patient Interim Analysis

As-treated population

Conclusions

- Outcomes at 30 days with the Lotus Valve as reported in prior clinical studies of selected patients are reproducible in routine clinical practice
 - 30-day mortality in patients who received a Lotus Valve was 1.9% in a real-world, elderly population with baseline STS Score of 6.7
 - 30-day disabling stroke was 2.7%
 - Minimal paravalvular regurgitation at hospital discharge by independent core lab adjudication
 - No patients with severe PVL and 0.4% moderate PVL
 - New permanent pacemaker rate in the second 250 cohort of enrolled patients was 27.4%, for an overall rate of 30.6% at 30 days
- Primary endpoint data from the full population of 1,000 patients anticipated to be available in 2016