Two-year outcomes with a fully repositionable and retrievable percutaneous aortic valve in 250 high surgical risk patients: Results from the REPRISE II trial extended cohort

Ian T. Meredith AM
MonashHeart, Clayton, Victoria, Australia

Nicolas Dumonteil, Daniel J. Blackman, Didier Tchétché, Darren Walters, David Hildick-Smith, Ganesh Manoharan, Jan Harnek, Stephen G. Worthley, Gilles Rioufol, Thierry Lefèvre, Thomas Modine, Nicolas Van Mieghem, Dominic J. Allocco, Keith D. Dawkins

on behalf of the REPRISE II Investigators
Disclosures

Ian T. Meredith AM

• Consultant Fee / Honoraria / Speaker’s Bureau:
 – Boston Scientific (Significant)

The REPRISE studies are sponsored and funded by Boston Scientific Corporation.
Lotus Valve System
Fully repositionable & retrievable

• Controlled mechanical expansion for precise placement
• Early valve function enables hemodynamic stability

Bovine Pericardium Leaflets
Braided Nitinol Frame
Radiopaque Positioning Marker
Adaptive Seal designed to minimise PVL
REPRISE II Study with Extended Cohort

OBJECTIVE

- Evaluate safety & performance of the Lotus Valve System for TAVI in symptomatic patients with severe calcific aortic stenosis considered high risk for surgical valve replacement

DESIGN

- Prospective; single-arm; multicentre
- Available valve sizes: 23mm & 27mm
- F/U at 7 days/discharge, 30 days, 3 & 6 months, annually 1–5 years

INDEPENDENT DATA ASSESSMENTS

- Clinical Events Committee
- Core Labs: Angiography, ECG, Echocardiography, Pathology
REPRISE II Study Organisation

PRINCIPAL INVESTIGATOR

Ian T. Meredith, MBBS, PhD, Monash Medical Centre, Clayton, Australia

CORE LABORATORIES

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Director</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiography & CT/X-ray</td>
<td>Jeffrey J. Popma, MD (Director)</td>
<td>Harvard Medical Faculty Physicians at Beth Israel Deaconess Medical Center, Boston, MA, USA</td>
</tr>
<tr>
<td>Echocardiography</td>
<td>Neil J. Weissman, MD (Director)</td>
<td>MedStar Health Research Institute, Washington, DC, USA</td>
</tr>
<tr>
<td>Electrocardiography</td>
<td>Peter J. Zimetbaum, MD (Director)</td>
<td>Harvard Clinical Research Institute, Boston, MA, USA</td>
</tr>
<tr>
<td>Pathology</td>
<td>Renu Virmani, MD (Director)</td>
<td>CV Path Institute, Inc., Gaithersburg, MD, USA</td>
</tr>
</tbody>
</table>

CLINICAL EVENTS COMMITTEE

<table>
<thead>
<tr>
<th>Chair</th>
<th>Co-Chair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sergio Waxman, MD</td>
<td>Gregory Smaroff, MD (CT Surg)</td>
</tr>
<tr>
<td>Carey Kimmelstiel, MD</td>
<td>Roberto Rodriguez, MD (CT Surg)</td>
</tr>
<tr>
<td></td>
<td>Viken Babikian, MD (Neurologist)</td>
</tr>
</tbody>
</table>
Enrollment – REPRISE II with Extended Cohort

250 patients between Oct 2012 & Apr 2014 at 20 sites

<table>
<thead>
<tr>
<th>Patient Name</th>
<th>Site Details</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ian Meredith</td>
<td>Monash Medical Centre, Clayton, Australia</td>
<td>38</td>
</tr>
<tr>
<td>Nicolas Dumonteil</td>
<td>Centre Hôpital Universitaire Rangueil, Toulouse, France</td>
<td>29</td>
</tr>
<tr>
<td>Daniel Blackman</td>
<td>The General Infirmary, Leeds, UK</td>
<td>22</td>
</tr>
<tr>
<td>Didier Tchétché</td>
<td>Clinique Pasteur, Toulouse, France</td>
<td>21</td>
</tr>
<tr>
<td>David Hildick-Smith</td>
<td>Royal Sussex County Hospital, Brighton, UK</td>
<td>19</td>
</tr>
<tr>
<td>Ganesh Manoharan</td>
<td>Royal Victoria Hospital, Belfast, UK</td>
<td>19</td>
</tr>
<tr>
<td>Darren Walters</td>
<td>The Prince Charles Hospital, Brisbane, Australia</td>
<td>19</td>
</tr>
<tr>
<td>Jan Harnek</td>
<td>University Hospital of Lund, Lund, Sweden</td>
<td>16</td>
</tr>
<tr>
<td>Stephen Worthley</td>
<td>Royal Adelaide Hospital, Adelaide, Australia</td>
<td>13</td>
</tr>
<tr>
<td>Gilles Rioufol</td>
<td>Hôpital Cardiologique de Lyon, Bron, France</td>
<td>10</td>
</tr>
<tr>
<td>Thierry Lefèvre</td>
<td>Institut Cardiovasculaire - Paris Sud, Massy, France</td>
<td>9</td>
</tr>
<tr>
<td>Thomas Modine</td>
<td>CHRU Lille - Hôpital Cardiologique, Lille, France</td>
<td>9</td>
</tr>
<tr>
<td>Nicolas Van Mieghem</td>
<td>Erasmus Medical Center, Rotterdam, The Netherlands</td>
<td>8</td>
</tr>
<tr>
<td>Rüdiger Lange</td>
<td>Deutsches Herzzentrum Muenchen, Muenchen, Germany</td>
<td>4</td>
</tr>
<tr>
<td>Robert Whitbourn</td>
<td>St. Vincent's Hospital (Melbourne), Fitzroy, Australia</td>
<td>4</td>
</tr>
<tr>
<td>Simon Redwood</td>
<td>Guys and St. Thomas’ NHS Foundation Trust, London, UK</td>
<td>3</td>
</tr>
<tr>
<td>Corrado Tamburino</td>
<td>Ospedale Ferrarotto, Catania, Italy</td>
<td>3</td>
</tr>
<tr>
<td>Ralf Müller</td>
<td>HELIOS Klinikum Siegburg, Siegburg, Germany</td>
<td>2</td>
</tr>
<tr>
<td>Eulogio Garcia</td>
<td>Hospital Clinico San Carlos, Madrid, Spain</td>
<td>1</td>
</tr>
<tr>
<td>Stephan Windecker</td>
<td>Universitätsspital Bern, Bern, Switzerland</td>
<td>1</td>
</tr>
</tbody>
</table>
REPRISE II Study with Extended Cohort

Preplanned Analysis of Pooled Data

- REPRISE II (N=120)
 - 1° Device Performance Endpoint (N=120)
 - 30-day mean aortic valve gradient compared to a performance goal of 18 mmHg*
 - As-Treated Population

- REPRISE II Extension (N=130)
 - 1° Safety Endpoint (N=250)
 - 30-day all-cause mortality compared to a performance goal of 16%†
 - Intent-to-Treat Population

Additional endpoints according to the VARC-2 metrics

* Meredith, et al. JACC 2014;64:1339
† Meredith, et al. PCR London Valves 2014
Study Flow – REPRISE II with Extended Cohort

Intent-To-Treat
N=250

Lotus Valve Implanted at Index Procedure
N=248

Valve Implanted Later: n=1

As Treated Analysis Set
N=249

Withdrew Consent: n=2
Lost to F/U: n=1
Missed Visit: n=7

2-Year Follow-up Data Available or Clinical Event: 96.0% (239/249)

2-Year TTE Assessment: N=146

Intent-to-treat population.
Baseline Characteristics

REPRISE II with Extended Cohort (N=250; Intent-To-Treat)

Comorbidities & Baseline Scores

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Years)</td>
<td>84.0 ± 5.2</td>
<td>250</td>
</tr>
<tr>
<td>Gender (Female)</td>
<td>52.4%</td>
<td>131</td>
</tr>
<tr>
<td>Diabetes, treated</td>
<td>24.0%</td>
<td>60</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>37.2%</td>
<td>93</td>
</tr>
<tr>
<td>NYHA Class III or IV</td>
<td>77.2%</td>
<td>193</td>
</tr>
<tr>
<td>euroSCORE 2011 (%)</td>
<td>6.4 ± 6.2</td>
<td>250</td>
</tr>
<tr>
<td>STS Score (v 2.73; %)</td>
<td>6.5 ± 4.2</td>
<td>250</td>
</tr>
<tr>
<td>STS Plus Score (%)</td>
<td>10.6 ± 7.7</td>
<td>250</td>
</tr>
</tbody>
</table>

Echocardiographic Measurements*

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVA (cm²)</td>
<td>0.7 ± 0.2</td>
<td>197</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>53.1 ± 10.5</td>
<td>126</td>
</tr>
<tr>
<td>MR (mod/severe)</td>
<td>10.6%</td>
<td>24</td>
</tr>
<tr>
<td>Mean gradient (mmHg)</td>
<td>45.2 ± 13.6</td>
<td>212</td>
</tr>
<tr>
<td>AR (mod/severe)</td>
<td>13.3%</td>
<td>29</td>
</tr>
<tr>
<td>Peak gradient (mmHg)</td>
<td>74.7 ± 21.1</td>
<td>212</td>
</tr>
</tbody>
</table>

Frailty Indices

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Meter gait speed (sec)</td>
<td>8.6 ± 5.2</td>
<td>236</td>
</tr>
<tr>
<td>Max grip strength average (kg)</td>
<td>21.1 ± 11.5</td>
<td>246</td>
</tr>
<tr>
<td>Katz Index</td>
<td>5.7 ± 0.8</td>
<td>247</td>
</tr>
<tr>
<td>Mini-Cognitive Assessment for Dementia</td>
<td>3.5 ± 1.4</td>
<td>244</td>
</tr>
</tbody>
</table>

* Independent Core Lab assessment
Device Performance

REPRISE II with Extended Cohort (N=250; Intent-To-Treat)

Successful access, delivery, deployment & system retrieval 98.8%
Successful valve repositioning, if attempted (n=85) 100.0%
 Partial valve resheathing (n) 71
 Full valve resheathing (n) 14
Successful valve retrieval, if attempted (n=13) 92.3%
Aortic valve malpositioning 0.0%
 Valve migration 0.0%
 Valve embolisation 0.0%
 Ectopic valve deployment 0.0%
 TAV-in-TAV deployment 0.0%
Procedural Device Success – VARC 2 Metrics

REPRISE II with Extended Cohort (N=250; Intent-To-Treat)
Core-lab adjudicated

- No procedural mortality: 98.4% (246/250)
- Correct positioning of one valve in proper location: 99.2% (248/250)
- Mean aortic valve gradient <20 mmHg: 95.0% (210/221)
- Peak velocity <3 m/s: 94.6% (210/222)
- No moderate/severe prosthetic valve regurgitation: 98.2% (217/221)
Primary Endpoints

REPRISE II with Extended Cohort

Mean Aortic Valve Gradient at 30 Days (N=120)
(As-Treated population)

Performance Goal = 18.0mmHg*

11.5mmHg

11.5mmHg ± UCB (12.6mmHg)
is significantly below the performance goal (P<0.001)‡

All-cause Mortality at 30 Days (N=250)
(Intent-to-Treat Population)

Performance Goal = 16%†

4.4%

4.4% ± UCB (6.97%)
is significantly below the performance goal (P<0.001)§

* Based on an expected mean of ≤15mmHg (literature review) plus a test margin of 3mmHg
† Based on an expected rate of 9.8% (literature review) plus a test margin of 6.2%
‡ Meredith, et al. JACC 2014; 64:1339.
Mean Aortic Gradient & EOA at 2 Years

REPRISE II With Extended Cohort (N=249; As Treated)

Values are mean ± standard deviations. As-treated population.
Paravalvular Aortic Regurgitation at 2 Years

REPRISE II With Extended Cohort (N=249; As Treated)

No moderate or severe paravalvular aortic regurgitation at 2 years

Core-lab adjudicated data. Values may not add to 100% due to rounding. As-treated population.
Safety: Death & Stroke at 2 Years

REPRISE II with Extended Cohort (N=249; As Treated)

<table>
<thead>
<tr>
<th>Event</th>
<th>30 Days</th>
<th>1 Year</th>
<th>2 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause death</td>
<td>4.0% (10)</td>
<td>11.8% (29)</td>
<td>19.1% (47)</td>
</tr>
<tr>
<td>Cardiovascular death</td>
<td>3.6% (9)</td>
<td>7.8% (19)</td>
<td>9.5% (23)</td>
</tr>
<tr>
<td>Disabling stroke</td>
<td>2.9% (7)</td>
<td>3.7% (9)</td>
<td>4.7% (11)</td>
</tr>
<tr>
<td>Non-disabling stroke</td>
<td>4.1% (10)</td>
<td>4.9% (12)</td>
<td>4.9% (12)</td>
</tr>
</tbody>
</table>

All REPRISE II patients (n=120) were assessed by a neurologist before and after TAVI. KM rates.
Pacemaker Implantation at 2 Years

REPRISE II with Extended Cohort (N=249; As Treated)

New Permanent Pacemaker (N=249)

0 days to 1 Year
81 (33.1%)

1 Year to 2 Years
4 (1.9%)

3rd degree AV block on day 432
1

Symptomatic bradycardia (days 527, 663, and 673)
3

0 Days to 2 Years
85 (35.1%)

Kaplan-Meier rates. Events may not add over time due to censoring.
Additional VARC 2 Safety Endpoints at 2 Years

REPRISE II With Extended Cohort (N=249; As Treated)

Periprocedural (≤ 72 h)

2 Years

Percent of Patients (N=249)

- Coronary Obstruction
- MI <72 h
- Cardiac Tamponade
- MI >72 h
- Repeat Proc. Valve Dysfunct.
- Major Vascular Compl.
- Life-threat. Bleed
- AKI (Stage 2/3)
- Valve Thrombosis
- Valve Endocarditis

Kaplan-Meier rates. Individual values may not sum to cumulative values due to rounding.

SH 441722 AA DEC 2016
NYHA Class Changes at 2 Years

REPRISE II with Extended Cohort (N=249; As Treated)

<table>
<thead>
<tr>
<th>Measurement</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline to Discharge</td>
<td><0.001</td>
</tr>
<tr>
<td>Baseline to 2 Years</td>
<td><0.001</td>
</tr>
<tr>
<td>Discharge to 30 Days</td>
<td><0.001</td>
</tr>
<tr>
<td>1 Year to 2 Years</td>
<td>0.80</td>
</tr>
</tbody>
</table>

P values calculated from paired Wilcoxon signed-rank test.
Conclusions

REPRISE II with Extended Cohort (N=250)

• At 2 years
 – Continued excellent safety and efficacy
 – Conserved valve haemodynamics
 – No moderate or severe PVL
 ▪ >90% of patients had no/trace PVL
 – Significant and sustained improvement in NYHA functional class
 ▪ >92% of patients NYHA Class I or Class II
 – Adverse event rates consistent with those reported for other valves

• These findings are consistent with those reported for the REPRISE II main cohort at 2 years, and support the use of the Lotus Valve for the treatment of aortic stenosis in high-risk surgical patients.