Ultra ICE™ Plus
9 MHz IntraCardiac Echo Catheter

INTENDED USE/INDICATIONS FOR USE
The Ultra ICE Plus rounded tip catheter is indicated for enhanced ultrasonic visualization of intracardiac structures.

CONTRAINDICATIONS
This product is contraindicated in the presence of conditions which create unacceptable risk during catheterization. This device is not to be used in the coronary arteries.

COMPICATIONS
1. The risks and discomforts involved in imaging cardiac structures include those associated with similar types of diagnostic procedures in the heart. However, any of these risks or discomforts may occur with greater frequency or severity than previously reported. Additionally, these complications may necessitate additional medical treatment including surgical intervention.
 - Abnormal heart rhythms
 - Cardiac wall injury including perforation
 - Damage to cardiac valvular structures
 - Death
 - Endocarditis
 - Hematoma
 - Hypotension/Hypertension
 - Infection/discomfort
 - Myocardial infarction
 - Stroke/embolism
 - Thrombosis
 - Vascular wall injury including perforation

2. As with all procedures that utilize the Sellinger Technique for introducing a catheter into an artery, the following complications have been reported:
 - Infection and pain in the region of the insertion site
 - Hemorrhage
 - Arteriovenous Fistula

WARNING
Contents supplied STERILE using a radiation process. Do not use if sterile barrier is damaged. If damage is found, call your Boston Scientific representative.

PRECAUTIONS
• Contents supplied STERILE using a e-beam radiation process. Do not use if sterile barrier is damaged. If damage is found, call your Boston Scientific representative.
• For single use only. Do not reuse, reprocess or resterilize. Reuse, reprocessing or resterilization may compromise the structural integrity of the device and/or lead to device failure which, in turn, may result in patient injury, illness or death. Reuse, reprocessing or resterilization may also create a risk of contamination of the device and/or cause patient infection or cross-infection, including, but not limited to, the transmission of infectious disease(s) from one patient to another. Contamination of the device may lead to injury, illness or death of the patient.
• This device should be used by physicians thoroughly trained in the techniques of invasive cardiology and in the specific approach to be used.
• After the procedure, inspect the catheter carefully for any damage which may have occurred during use.
• The catheter has no serviceable parts. Do not attempt to repair or to alter any component of the catheter assembly as provided. Do not attempt to connect the catheter to electronic equipment other than the designated systems.
• Never attempt to attach or detach the catheter while the motor is running. To do so may damage the connector.
• Throughout the procedure anticoagulant therapy is recommended for patients undergoing left-sided and transseptal cardiac procedures and should be considered for selected patients undergoing right-sided procedures.
• Avoid any sharp bends, pinching or crushing of the catheter.
• Do not kink or sharply bend the catheter at any time. This can cause drive cable failure. An insertion angle greater than 45° is considered excessive.
• Turn the MDUS PLUS “OFF” before withdrawing the imaging catheter, or when advancing the catheter in the body.
• Prior to utilizing the ICE catheter, verify there are not kinks in either the ICE catheter or guide sheath. Utilization of a kinked ICE catheter and/or guide sheath could compromise the functionality of the ICE catheter, leading to device failure.

HOW SUPPLIED
Do not use if package is opened or damaged. Do not use if labeling is incomplete or illegible.

Uses:
- Single use only
- Do not reuse, reprocess or resterilize
- Contents supplied STERILE using a e-beam radiation process

Storage Environment
- Ambient Temperature: 20 °C to 30 °C
- Relative Humidity: Uncontrolled

Transport Environment
- Temperature: -29 °C to 60 °C
- Relative Humidity: 30% to 85%

Ambient Temperature: 10 °C to 40 °C
Relative Humidity: 30% to 75%
Atmospheric Pressure: 70 kPa to 106 kPa
DIRECTIONS FOR USE

A. Inspection Prior to Use

The Ultra ICE™ Plus Catheter is supplied sterile in a sealed package. Carefully inspect the package for any breach of the sterile seal and for any damage to the catheter. Also, the tip of the catheter should be carefully inspected visually prior to use and after removal.

B. Preparation for Use

1. Fill the supplied syringe with sterile water. DO NOT USE SALINE.
2. Insert the supplied needle (26 gauge, non-coring) or Fluid Dock™ into the tip of the catheter. The needle or Fluid Dock should be inserted through the center of the self-sealing septum (the white seal at the distal tip of the catheter). If using the supplied needle, keep the needle or Fluid Dock aligned with the catheter, taking care to avoid puncturing the sonolucent window with the needle.
3. Insert the needle only enough so that the tip clears the septum and becomes visible on the other side of the septum (See Figure 1). DO NOT TOUCH THE TRANSUDER WITH THE NEEDLE.

![Figure 1](image)

C. Catheter Placement

1. The Ultra ICE™ Plus Catheter is introduced through a standard 9F (3 mm) / 10F (3.3 mm) venous or arterial access system. The catheter is then advanced under fluoroscopy to the desired position and imaging may commence.
2. The directionality of the catheter tip may be enhanced by using a multipurpose EP Long Sheath, or guiding catheter.

![Figure 2](image)

3. With the catheter tip pointed down, and holding the proximal hub much higher, using a full 10 cm² luer lock syringe or Fluid Dock, inject sterile water into the catheter until water is expelled from the flush port. Continue injecting at a minimum 3 more cm³ after water is expelled.

4. Remove the needle or the Fluid Dock, hold the catheter with the distal tip pointed down about 0.195 (MHz)
5. Examine the distal tip and acoustic window area, if persistent bubbles remain visible, repeat steps 4 and 5 above. DO NOT PROCEED IF DAMAGE IS OBSERVED.

6. Connect the imaging catheter to the MDU5 PLUS TILTED UPWARDS TO PREVENT THE PROXIMAL PART OF THE CATHETER FROM KINKING.
7. OBSERVE THE POSITION OF THE MDU5 PLUS AND CATHETER DURING THE PROCEDURE.

Acoustic Output Reporting Table for Track 1

<table>
<thead>
<tr>
<th>Acoustic Parameters</th>
<th>MI</th>
<th>I_{in situ}(mW/cm²)</th>
<th>I_{org}(W/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Elev.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam Az.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam Prf</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acoustic Power Output

- **Acoustic Power Output**
 - Acoustic Power Output varies between different models of imaging catheters. Each imaging catheter supplied by Boston Scientific Corporation is supplied with Directions For Use (DFUs) that include statements and tables specifying their acoustic power outputs.
 - US FDA guidelines for measurements and definitions of terms may be found in FDA publication: Information for Manufacturers Seeking Market Clearance of Diagnostic Ultrasound Systems and Transducers, (September 9, 2008).

Calculation of Estimated in situ Intensities

The estimated spatial peak in situ intensities are calculated from the spatial peak water values using the following equation:

\[
I_{\text{in situ}} = I_{\text{org}} \times 0.69 \times z \times f \times \text{PD} \times \text{PRF}
\]

where \(I_{\text{in situ}}\) is the estimated in situ intensity; \(I_{\text{org}}\) is the measured intensity in water, \(f\) is the center frequency of ultrasound in MHz, and \(z\) is the distance from the catheter surface to the measurement point in centimeters, 0.47 cm in this case. It should be noted that because of the complex acoustic properties of living tissue, the estimated in situ intensity may not be the same as the actual in situ intensity, and therefore, it should not be interpreted as such.

Acoustic Catheter Information

- **Acoustic Power Output**
 - Acoustic Power Output varies between different models of imaging catheters. Each imaging catheter supplied by Boston Scientific Corporation is supplied with Directions For Use (DFUs) that include statements and tables specifying their acoustic power outputs.
 - US FDA guidelines for measurements and definitions of terms may be found in FDA publication: Information for Manufacturers Seeking Market Clearance of Diagnostic Ultrasound Systems and Transducers, (September 9, 2008).

Note: The US FDA guidance document “Information for Manufacturers Seeking Market Clearance of Diagnostic Ultrasound Systems and Transducers” dated September 9, 2008 classifies intravascular ultrasound within the application(s) “Fetal Imaging & Other” to determine the maximum allowable acoustic output energy. The catheter is not intended for fetal imaging.

Acoustic Output Reporting Table for Track 1

<table>
<thead>
<tr>
<th>Acoustic Parameters</th>
<th>MI</th>
<th>I_{in situ}(mW/cm²)</th>
<th>I_{org}(W/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Elev.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam Az.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam Prf</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operating Control Conditions

- **Acoustic Output**
 - All intensities and total power have uncertainty of +17.32% to –15.49%.
 - All pressure values have uncertainty of ±0.85% to ±1.34%.
 - All center frequency values have uncertainty of ±7.79% to ±7.39%.

Note: Imaging through a long sheath or guiding catheter may compromise image depth and may affect measurement accuracy.

DO NOT use excessive force to pass the ultrasound catheter through introducers or other ancillary equipment. The catheter should never be forcibly inserted into lumens narrower than the catheter body or forced through a tight stenosis. **DO NOT** advance the catheter if resistance is encountered.
ACOUSTIC OUTPUT – COMPLIANCE TO IEC 60601-2-37

Prudent-Use Statement
It is the responsibility of the system operator to understand the risk of the acoustic outputs generated by the Imaging System and its associated imaging catheters. It is also their responsibility to act appropriately to mitigate such risks. To that end, Boston Scientific Corporation has reported Mechanical and/or Thermal Indices that may exceed the requirements of IEC 60601-2-37.

Please note that the Mechanical Index (MI) displayed on the system's screen has not been corrected for finite amplitude effects.

Imaging Catheter Information
Acoustic Power Output varies between different models of imaging catheters. Each imaging catheter supplied by Boston Scientific Corporation is supplied with Directions For Use (DFUs) that include statements and tables specifying their acoustic power outputs.

IEC requirements for measurements and definition of terms may be found in IEC 60601-2-37 - “Particular requirements for the safety of ultrasonic medical diagnostic and monitoring equipment.”

Where Mechanical and/or Thermal Indices are reported, the MI/TI is displayed on the lower right of the ultrasound image next to the imaging catheter identification.

ACOUSTIC OUTPUT REPORTING TABLE
(In accordance with IEC 60601-2-37)

<table>
<thead>
<tr>
<th>Index Label</th>
<th>MI</th>
<th>TIS-Scan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>0.095</td>
<td>0.099</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Associated Acoustic Parameters</th>
<th>MI</th>
<th>TIS-Scan</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{eq} (MPa)</td>
<td>1.831</td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>2.068</td>
<td></td>
</tr>
<tr>
<td>min. of $[z_{1}, l_{\text{eq}}, \alpha_{1}]$ (cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{1} (cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{eq} (cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α_{1} (cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z at max. I_{eq} (cm)</td>
<td>0.468</td>
<td></td>
</tr>
<tr>
<td>d_{max} (cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{eq} (MHz)</td>
<td>9.40</td>
<td>9.40</td>
</tr>
<tr>
<td>Dim of A_{eq}</td>
<td>X (cm)</td>
<td>0.193</td>
</tr>
<tr>
<td></td>
<td>Y (cm)</td>
<td>0.190</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Information</th>
<th>MI</th>
<th>TIS-Scan</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{eq} (µsec)</td>
<td>0.195</td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>7680</td>
<td></td>
</tr>
<tr>
<td>p_{eq} at max. I_{eq} (MPa)</td>
<td>2.131</td>
<td></td>
</tr>
<tr>
<td>d_{max} at max. I_{eq} (cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{eq} at max. MI (W/cm²)</td>
<td>133.44</td>
<td></td>
</tr>
</tbody>
</table>

Operating control conditions	

There are no user controls that affect the catheter values provided in this table.	

All intensities and total power have uncertainty of +17.2% to –15.49%.
All pressure values have uncertainty of +8.66% to –7.74%.
All center frequencies have uncertainty of +17.3% to –17.3%.

WARRANTY
Boston Scientific Corporation (BSC) warrants that reasonable care has been used in the design and manufacture of this instrument. This warranty is in lieu of and excludes all other warranties not expressly set forth herein, whether express or implied by operation of law or otherwise, including, but not limited to, any implied warranties of merchantability or fitness for a particular purpose. Handling, storage, cleaning and sterilization of this instrument as well as other factors relating to the patient, diagnosis, treatment, surgical procedures and other matters beyond BSC’s control directly affect the instrument and the results obtained from its use. BSC’s obligation under this warranty is limited to the repair or replacement of this instrument and BSC shall not be liable for any incidental or consequential loss, damage or expense directly or indirectly arising from the use of this instrument. BSC neither assumes, nor authorizes any other person to assume for it, any other or additional liability or responsibility in connection with this instrument. BSC assumes no liability with respect to instruments reused, reprocessed or resterilized and makes no warranties, express or implied, including but not limited to merchantability or fitness for a particular purpose, with respect to such instruments.
ONLY

Caution: Federal Law (USA) restricts this device to sale by or on the order of a physician.

WARNING
Contents supplied STERILE using a radiation process. Do not use if sterile barrier is damaged. If damage is found, call your Boston Scientific representative.

For single use only. Do not reuse, reprocess or resterilize. Reuse, reprocessing or resterilization may compromise the structural integrity of the device and/or lead to device failure which, in turn, may result in patient injury, illness or death. Reuse, reprocessing or resterilization may also create a risk of contamination of the device and/or cause patient infection or cross-infection, including, but not limited to, the transmission of infectious disease(s) from one patient to another. Contamination of the device may lead to injury, illness or death of the patient.

After use, dispose of product and packaging in accordance with hospital, administrative and/or local government policy.

Carefully read all instructions prior to use. Observe all contraindications, adverse events, warnings, and precautions noted in these directions. Failure to do so may result in patient complications. Boston Scientific relies on the physician to determine, assess and communicate to each patient all foreseeable risks of the procedure.

DEVICE DESCRIPTION
This device provides an efficient, conformal covering to fit the MDU5 PLUS motordrive.

Contents
MDU5 PLUS Sterile Bag (referred to as “bag”)

INTENDED USE/INDICATIONS FOR USE
The MDU5 PLUS Sterile Bag is intended to cover the motordrive during intravascular ultrasound procedures to maintain the sterile field and prevent transfer of microorganisms, body fluids and particulate material to the patient and healthcare worker.

CONTRAINDICATIONS
None known.

ADVERSE EVENTS
None known.

PRECAUTIONS
None known.

HOW SUPPLIED
Do not use if package is opened or damaged.
Do not use if labeling is incomplete or illegible.

Handling and Storage
Store in a cool, dry, dark place.

DIRECTIONS FOR USE
A. Inspection Prior to Use
Before use, inspect the packaging for any violation of the sterile barrier and inspect the bag for any damage or defects. Do not use potentially contaminated or defective equipment. If the sterile barrier integrity is compromised or the contents damaged, contact your Boston Scientific representative.

Prior to use, verify product is within labeled shelf life. Do not use product if the ‘Use By’ date has been exceeded. Dispose of product and packaging in accordance with hospital, administrative and/or local government policy.

B. Covering the MDU5 PLUS
Covering the MDU5 PLUS requires two people – one inside and one outside the sterile field. Using appropriate sterile technique:

1. The non-sterile operator opens the pouch containing the bag.
2. The sterile operator removes the bag from the pouch.
3. The sterile operator unfolds the bag so the “Insert Here” sticker is on one end and the faceplate is on the opposite end.
4. The sterile operator places their hands into the innermost folds of the bag, opening the bag for MDU5 PLUS placement by the non-sterile operator. The “Insert Here” sticker can be used to easily locate the bag opening (Figure 3).
5. The non-sterile operator then places the MDU5 PLUS into the opening, positioning the MDU5 PLUS so that the top of the unit is aligned with the “This Side Up” sticker on the bag (Figure 4).
6. The sterile operator then grasps the covered MDU5 PLUS. The non-sterile operator grips and pulls the tabs until the bag is unfolded to its full length (Figure 5).
7. To position the bag, stop advancing the MDU5 PLUS into the bag as soon as a snug fit is obtained. The sterile operator does not need to advance the MDU5 PLUS all the way to the bag’s faceplate. It is normal to have space between the nose of the MDU5 PLUS and the faceplate on the bag (Figure 6).
8. To attach the bag to the MDUS PLUS™, the sterile operator should align the bag’s faceplate with the nose of the MDUS PLUS (Figure 7), and gently push to secure the connection. Do not trap material between the faceplate and the nose. Extra bag material around and beyond the connection is normal (Figure 8).

![Figure 7. Attaching the Faceplate](image)

9. When ready to insert the MDUS PLUS compatible catheter, remove the sticker from the faceplate and discard appropriately (Figure 9).

![Figure 8. Attached Faceplate](image)

![Figure 9. Removing Sticker](image)

10. The bagged MDUS PLUS is now ready for use.

WARRANTY

Boston Scientific Corporation (BSC) warrants that reasonable care has been used in the design and manufacture of this instrument. This warranty is in lieu of and excludes all other warranties not expressly set forth herein, whether express or implied by operation of law or otherwise, including, but not limited to, any implied warranties of merchantability or fitness for a particular purpose. Handling, storage, cleaning and sterilization of this instrument as well as other factors relating to the patient, diagnosis, treatment, surgical procedures and other matters beyond BSC’s control directly affect the instrument and the results obtained from its use. BSC’s obligation under this warranty is limited to the repair or replacement of this instrument and BSC shall not be liable for any incidental or consequential loss, damage or expense directly or indirectly arising from the use of this instrument. BSC neither assumes, nor authorizes any other person to assume for it, any other or additional liability or responsibility in connection with this instrument. BSC assumes no liability with respect to instruments reused, reprocessed or resterilized and makes no warranties, express or implied, including but not limited to merchantability or fitness for a particular purpose, with respect to such instruments.