IntellaNav™ XP
Temperature Ablation Catheter

TABLE OF CONTENTS

WARNING .. 1
DEVICE DESCRIPTION ... 1

Table 1. Technical Specifications 1
User Information ... 2
Contents ... 2

INTENDED USE/INDICATIONS FOR USE 2

CONTRAINDICATIONS ... 2

WARNINGS .. 2

PRECAUTIONS ... 2

ADVERSE EVENTS .. 2

CLINICAL STUDIES .. 2

OBJECTIVE .. 2

Study Design ... 2
Study Endpoints .. 2

Table 2. Objective Performance Criteria for Atrial Flutter Ablation ... 3
Patient Accountability ... 3

Table 3. Patient Accountability 3
Patient Demographics ... 3

Results ... 3

A. Intraprocedural Data ... 3

Table 4. Intraprocedural Data (N = 209) 3

Table 5. Fluoroscopy/Procedure Index Times (N = 234) 3

A. B. Acute Procedural Success (bi-directional isthmus block) 3

Table 6. Acute Ablation Outcomes (N = 250) 3

C. Freedom from Atrial Flutter Recurrence at Six-Month Follow-Up ... 3

Table 7. Freedom from Atrial Flutter at 6 months 3
D. Adverse Events and Deaths 3

Major Adverse Events ... 3

Table 8. Major Adverse Events 3

Table 9. Patient Deaths .. 4

Statistical Analysis .. 4

Study Design ... 2
Study Endpoints .. 2

Table 2. Objective Performance Criteria for Atrial Flutter Ablation ... 3
Patient Accountability ... 3

Table 3. Patient Accountability 3
Patient Demographics ... 3

Results ... 3

A. Intraprocedural Data ... 3

Table 4. Intraprocedural Data (N = 209) 3

Table 5. Fluoroscopy/Procedure Index Times (N = 234) 3

B. Acute Procedural Success (bi-directional isthmus block) 3

Table 6. Acute Ablation Outcomes (N = 250) 3

C. Freedom from Atrial Flutter Recurrence at Six-Month Follow-Up ... 3

Table 7. Freedom from Atrial Flutter at 6 months 3
D. Adverse Events and Deaths 3

Major Adverse Events ... 3

Table 8. Major Adverse Events 3

Table 9. Patient Deaths .. 4

Statistical Analysis .. 4

CONTRAINDICATIONS ... 2

USER INFORMATION .. 2

DIRECTIONS FOR USE ... 4

HOW SUPPLIED .. 4

ADDITIONAL EQUIPMENT REQUIRED FOR SAFE USE 4

Operating Environment ... 4

Transport Environment ... 4

Storage Environment ... 4

IntellaNav XP CATHETER SET UP AND OPERATION INSPECTION PRIOR TO USE 4

INJECTION PRIOR TO USE 4

SETTING UP THE SYSTEM 4

Attaching the Dispersive Pads 4

DIRECTIONS FOR USE ... 4

CATHETER REMOVAL ... 5

WARRANTY ... 5

Figure 1. IntellaNav XP Catheter 5

Figure 2. System Connections 5

Table 1. Technical Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sterilization EO</td>
<td>STERILE</td>
</tr>
<tr>
<td>Distal Torque Attributes</td>
<td>High Torque</td>
</tr>
<tr>
<td>Handle Design</td>
<td>Similar to the IntellaTip M66™ XP Catheter Handle</td>
</tr>
<tr>
<td>IntellaNav XP Catheter Shaft Length</td>
<td>104 cm to 115 cm</td>
</tr>
<tr>
<td>IntellaNav XP Catheter Shaft Diameter</td>
<td>3F (2.33 mm)</td>
</tr>
<tr>
<td>Distal Tubing Length Standard and N4 Models K2 Model</td>
<td>8.6 cm, 11.1 cm</td>
</tr>
<tr>
<td>Distal Tip Electrode Diameter x Length 8F (2.67 mm) x 8 mm</td>
<td></td>
</tr>
<tr>
<td>Distal Tip Electrode Diameter x Length 8F (2.67 mm) x 8 mm</td>
<td></td>
</tr>
<tr>
<td>Curve Configurations Symmetric Asymmetric</td>
<td>Standard, K2 N4</td>
</tr>
<tr>
<td>Electrode Spacing Distal Tip-to-First-Ring Ring-to-ring</td>
<td>2.5 mm, 2.5 mm</td>
</tr>
<tr>
<td>Electrode Configuration Quadrupolar (4 Electrodes)</td>
<td></td>
</tr>
<tr>
<td>Ring Electrode Length</td>
<td>1.27 mm</td>
</tr>
<tr>
<td>Electrical Connectors Quick Connect</td>
<td></td>
</tr>
</tbody>
</table>
User Information
Cardiac mapping and ablation procedures should be performed only by physicians thoroughly trained in the techniques of RF Powered catheter mapping and ablation in a fully-equipped electrophysiology laboratory.

Contents
One (1) sterile IntellaNav™ XP Catheter

INTENDED USE/INDICATIONS FOR USE
The Boston Scientific Corporation IntellaNav XP Catheter is indicated for use with the BSC high power Cardiac Ablation Controllers (Maestro 3000™ Controller and Maestro 6000™ Controller) for the treatment of sustained or recurrent type I atrial flutter in patients age 18 or older.

The BSC high power Cardiac Ablation Controllers and Accessories are indicated for use in conjunction with standard and high power catheters for cardiac ablation procedures.

CONTRAINdications
Do not use this device:
• in patients with active systemic infection;
• via the transseptal approach in patients with left atrial thrombus or myxoma;
• via the retrograde approach in patients with aortic valve replacement.

WARNINGS
Before operating the device, read these warnings carefully:
• Peri-procedural anti-coagulation therapy is at the discretion of the physician, however, patients with a history of thromboembolic events may require therapeutic anti-coagulation therapy, pre-, during and post-ablation to reduce the incidence of major complications.
• Because the long-term effects of exposure to ionizing radiation are unknown, careful consideration should therefore be given to pregnant women and pre-pubertal children.
• Pacemakers and implantable cardioverter/defibrillators can be adversely affected by RF signals. It is important to:
 a. Retain temporary external sources of pacing available during ablation.
 b. Reprogram the pacing system temporarily to minimum output or 000 mode to minimize risk of inappropriate pacing.
 c. Exercise extreme caution during ablation when in close proximity to atrial or ventricular permanent pacing leads.
 d. Perform complete pacing system analysis on all patients after ablation.
• Implanted cardioverter/defibrillators should be deactivated during delivery of RF power.
• Catheter entrapment within the heart or blood vessels is a possible complication of cardiac ablation procedures. The potential for catheter entrapment may be increased when the catheter is positioned in the chordae tendineae. The occurrence of this complication may necessitate surgical intervention and/or repair of injured tissues.
• Care must be taken to ensure that any equipment used in connection with the BSC catheters, be type CF, be defibrillation proof, meet EN 60801-1 electrical safety requirements, and comply with all local regulatory requirements for the specified intended use.
• Maximum IntellaNav XP Catheter Rated Voltage: 178 Vrms (251 Vpk).
• No modification of this equipment is allowed.
• In the presence of anticoagulation, there may be an increased risk of bleeding from all causes.
• If there is uncertainty regarding the patient’s anticoagulation status or rhythm prior to the atrial flutter procedure, there should be a low threshold to perform a Transesophageal Echocardiogram (TEE) prior to the procedure to confirm absence of thrombus in the left atrial appendage based on an individual, patient-centered medical assessment of peri-procedural stroke risk.
• Do not pass the IntellaNav XP Catheter through any prosthetic heart valve (mechanical or tissue), as this may cause entrapment of the catheter and/or damage to the prosthetic valve, resulting in valve insufficiency and/or premature failure of the prosthetic valve.
• Do not deliver RF energy when the tip electrode is withdrawn or partially withdrawn into a sheath, to minimize the risk of char or coagulum formation.
• There are no data to support the safety and effectiveness of this device in the pediatric population.
• Ablation in contact with any other electrodes alters the function of the catheter and can lead to thrombus, coagulum, or char formation that may result in embolism.

PRECAUTIONS
Observe these precautions, before using the device:
• Do not place the distal end of the catheter near magnets. Magnetization of the catheter may result in degradation of magnetic tracking precision. Such degradation may be manifested by an unstable or complete loss of rendering of the position and/or orientation of the catheter by a magnetic tracking system. If this occurs, the catheter should be replaced.
• Do not attempt to operate the Controller before thoroughly reading the appropriate BSC high power Cardiac Ablation Controller Manual or accessories manual.
• The IntellaNav XP Catheters are intended for use with the BSC Controller and accessories only.
• The IntellaNav XP Catheter is highly torqueable. Avoid overtorquing. Over-ranging the handle and catheter shaft may cause damage to the distal tip or catheter assembly. Do not rotate the handle and catheter shaft more than one and one-half times the full rotation (540 degrees). If the desired catheter tip position is not achieved, adjust the catheter’s curve to disengage the catheter tip from the heart wall before resuming rotation of the handle and catheter shaft.
• Careful catheter manipulation must be performed in order to avoid cardiac damage, perforation, or tamponade. Catheter advancement should be done under fluoroscopic guidance.
• Do not use excessive force to advance or withdraw the catheter when resistance is encountered.
• Excessive bending or kinking of the catheter shaft may damage internal wires. Manually pre-bending of the distal curve can damage the steering mechanism and may cause patient injury.
• Cardiac mapping and ablation procedures should be performed only by physicians thoroughly trained in the techniques of RF Powered catheter mapping and ablation in a fully-equipped electrophysiology laboratory.
• Unlike with conventional catheters, a sudden rise in system impedance is not an indication of coagulum formation. Therefore, to minimize coagulum, it is recommended that the catheter periodically be removed and the distal tip cleaned after each line of block.
• Adequate signal filtering must be used to allow continuous monitoring of the catheter tip. Failure to do so may result in a false positive indication of the Dispersive Pads or failure of an electrical lead.
• When using the IntellaNav XP Catheter, it is required that two Dispersive Pads satisfying the requirements of IEC 60601-1/80601-2 be used as the disconnection return electrodes of skin burns may result. Use of only one Dispersive Pad will not allow the operator to fully access the higher power capabilities of the Controller.
• Placement of the Dispersive Pads on the thigh could be associated with higher impedance, which could result in automatic RF power shut-off.
• During power delivery, the patient should not be allowed to come in contact with grounded metal surfaces.
• Apparent low power output or failure of the equipment to function correctly at normal settings may indicate faulty application of the Dispersive Pads or failure of an electrical lead.
• Do not increase power before checking for obvious defects or misapplication.
• Regularly inspect and test re-usable cables and accessories.
• Electromagnetic Interference (EMI) produced by the Cardiac Ablation Controller during the delivery of RF power may adversely affect the performance of other equipment.
• Equipment/accessories carrying a current at 150-300 kHz Alternating Current near the catheter cable may cause direct coupled interference and therefore may disrupt the operation of non-BSC RF Generators. It may be necessary to take mitigation measures, such as re-orienting, relocating, or shielding the interfering equipment/accessories.

ADVERSE EVENTS
Potential Adverse Events
Potential adverse events (in alphabetical order), that may be associated with cardiac catheterization and ablation include, but are not limited to:
• Allergic reaction (including anaphylaxis)
• Angina
• Arrhythmias
• Arterial or pulmonary embolism
• Arteriovenous fistula
• Atroventricular node damage (transient/permanent)
• Back pain and/or groin pain
• Cardiac perforation
• Cardiac respiratory arrest
• Catheter entrapment
• Cerebral vascular accident
• Chest pain/discomfort
• Complete heart block (transient/permanent)
• Complications of sedative agents (e.g. aspiration pneumonia)
• Death
• Effusion (pericardial/plural)
• Hematoma/bruising
• Hemophagia
• Herniorrhage
• Hemotherax
• Hypotension
• Infection
• Myocardial infarction
• Nerve palsy or weakness
• Pericarditis
• Phrenic nerve damage/diaphragmatic paralysis
• Pleurisy
• Pneumothorax
• Pseudoaneurysm
• Pulmonary edema
• Radiation exposure
• Sinotral node damage
• Skin burn (defibrillator/defibrillator/defibrillator/radiation)
• Tamponade
• Transient Ischemic Attack (TIA)
• Valvular damage
• Vasovagal reactions
• Visual/blurring

CLINICAL STUDIES
Objective
The objective of the study was to evaluate the safety and efficacy of the Blazer™ XP Catheter and EPT-1000XP™ Controller and Accessories for radiofrequency ablation of sustained or recurrent type I atrial flutter.

Study Design
The study was a prospective, multi-center, single-arm study using objective performance criteria and historical control data from the medical literature. Clinical efficacy and safety assessments were performed at one, three and six months and at one and two years following the index procedure.

Study Endpoints
The primary endpoints for the study were as follows:
• Acute Procedural Success – defined as the demonstration of bi-directional isthmus block with non-inducible type I atrial flutter with only the use of the Blazer II XP Catheter and EPT-1000XP Controller and Accessories as assessed at the end of the ablation procedure.
• Six-Month Success – defined as demonstration of Acute Success and continued absence of targeted type I atrial flutter for the first six months after the index procedure.
• Complication Rate – refers to major complications experienced by patients exposed to the investigational device which occur within seven days post-procedure.
Table 2. Objective Performance Criteria for Atrial Flutter Ablation

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>OPC</th>
<th>%</th>
<th>One-sided 95% Confidence Bound1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Success</td>
<td>100%</td>
<td>86%</td>
<td>80%</td>
</tr>
<tr>
<td>Major Complications</td>
<td>0%</td>
<td>3%</td>
<td>7%</td>
</tr>
<tr>
<td>Six-Month Success</td>
<td>100%</td>
<td>86%</td>
<td>80%</td>
</tr>
</tbody>
</table>

1Exact bioenergizing using a commercially-available software package.

Table 3. Patient Accountability

<table>
<thead>
<tr>
<th>Description</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients enrolled in the study</td>
<td>250</td>
</tr>
<tr>
<td>Patients not ablated</td>
<td>20</td>
</tr>
<tr>
<td>Patients ablated with EPT-1000XP™ Cardiac Ablation System</td>
<td>250</td>
</tr>
<tr>
<td>Patients ablated only with EPT-1000XP Cardiac Ablation System</td>
<td>247</td>
</tr>
<tr>
<td>Patients ablated with EPT-1000XP Cardiac Ablation System and non-investigational catheter</td>
<td>5</td>
</tr>
<tr>
<td>Patients ablated only with non-investigational catheter</td>
<td>2</td>
</tr>
</tbody>
</table>

1Patients were first ablated with the EPT-1000XP Cardiac Ablation System only. If a fluid procedure could not be completed, then physicians used another catheter to complete the procedure. These patients were considered acute failures.

Patient Demographics

The majority of patients in the study are male (83%, N = 205/247). The average age of the male patients is 60.5 ± 11.1 years. There are 42 (17%) females enrolled in the study, with an average age of 63.4 ± 12.4 years.

Results

A. Intraprocedural Data

The table below describes the intraprocedural data:

Table 4. Intraprocedural Data (N = 209*)

<table>
<thead>
<tr>
<th>Description</th>
<th>Mean ± SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total # of RF applications/procedure (N = 209 procedures)</td>
<td>11.5 ± 10.6</td>
<td>1.0 - 86.0</td>
</tr>
<tr>
<td>Total Duration of RF applications (minutes) (N = 209 procedures)</td>
<td>14.6 ± 12.1</td>
<td>2.0 - 74.9</td>
</tr>
<tr>
<td>Duration per delivery (seconds) (N = 245 RF applications)</td>
<td>75.9 ± 37.4</td>
<td>11.0 - 120.0</td>
</tr>
<tr>
<td>Maximum set power (Watts) (N = 245 RF applications)</td>
<td>76.9 ± 17.1</td>
<td>30.0 - 100.0</td>
</tr>
<tr>
<td>Average delivered power (Watts) (N = 245 RF applications)</td>
<td>54.3 ± 20.5</td>
<td>6.4 - 96.7</td>
</tr>
<tr>
<td>Maximum set temperature (°C) (N = 245 RF applications)</td>
<td>64.2 ± 4.8</td>
<td>45.0 - 80.0</td>
</tr>
<tr>
<td>Average delivered temperature (°C) (N = 245 RF applications)</td>
<td>54.6 ± 6.3</td>
<td>45.0 - 77.9</td>
</tr>
</tbody>
</table>

*Based on RF ablation data received.

The index procedure and fluoroscopy times are shown in the table below.

Table 5. Fluoroscopy/Procedure Index Times (N = 234)

<table>
<thead>
<tr>
<th>Description</th>
<th>Number of Procedures</th>
<th>Mean ± SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Procedure (hours)</td>
<td>234</td>
<td>2.1 (±1.3)</td>
<td>0.3 - 9.8</td>
</tr>
<tr>
<td>Ablation Time (hours)</td>
<td>231</td>
<td>0.7 (±0.7)</td>
<td>0.03 - 4.5</td>
</tr>
<tr>
<td>Total Fluoroscopy (minutes)</td>
<td>232</td>
<td>28.5 (±20.2)</td>
<td>2.8 - 129.0</td>
</tr>
<tr>
<td>Ablation Only Fluoroscopy (minutes)</td>
<td>222</td>
<td>14.8 (±13.6)</td>
<td>0.6 - 102.0</td>
</tr>
</tbody>
</table>

B. Acute Procedural Success (bi-directional ischuras block)

Acute success evaluation was based on 250 patients treated with the Blazer™ II XP Catheter and EPT-1000XP Controller and Accessories. The table below describes the information:

Table 6. Acute Ablation Outcomes (N = 250)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th># Success/ # Patients Ablated</th>
<th>Percentage (One-sided 95% Confidence Bound)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Success</td>
<td>225/250</td>
<td>94% (91.5)</td>
</tr>
</tbody>
</table>

C. Freedom from Atrial Flutter Recurrence at Six-Month Follow-Up

Freedom from atrial flutter recurrence was evaluated in patients in whom Bi-directional Ischaemic Conduction Block (BDB) and noninducibility of Atrial Flutter (AFI) post ablation was achieved and were considered evaluable for an assessment of long-term (six-month) success. The patients were divided into evaluable at six months and not evaluable at six months. There were also 30 patients of the total 250 patients that had not completed the six-month follow-up.

Reasons that patients were classified "not evaluable":

- Treatment with anti-arrhythmic therapy = 31 patients
- This was defined as treatment with Class IA, IC or III at both the one-month and three-month, or at the six-month follow-up. The rationale was that this treatment might suppress the recurrence of atrial flutter and obscure the actual rate of recurrence.
- Implanted defibrillators/pacemakers = 11 patients
- The rationale for not evaluating these patients was that the effect of pacing on atrial flutter is unknown and the presence of pacing might make the assessment of atrial flutter difficult.
- Persistent atrial fibrillation = 1 patient
- Persistent atrial fibrillation might essentially "overdrive" the atrial flutter. This one patient developed atrial fibrillation shortly after the procedure and remained in that rhythm for the duration of the study.
- Withdrawn consent/lost to follow-up = 6 patients. These patients were determined to be not evaluable if they were lost to the study prior to six-month follow-up.
- Death = 5 patients prior to the six-month follow-up. These patients would have been evaluable if they had a recurrence of atrial flutter and were not on medications that would alter the assessment of that recurrence.

Based on these reasons, information was available on a total of 151 patients. Results are described in the table below.

Table 7. Freedom from Atrial Flutter at 6 months

<table>
<thead>
<tr>
<th>Description</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients ablated only with EPT-1000XP Cardiac Ablation System and successful BDB and AFI, non-inducibility (Acute Success)</td>
<td>151</td>
</tr>
<tr>
<td>Number of patients free from recurrence</td>
<td>145</td>
</tr>
<tr>
<td>Number of patients with recurrence of atrial flutter</td>
<td>6</td>
</tr>
</tbody>
</table>

D. Adverse Events and Deaths

An adverse event was determined to be any undesirable experience occurring to a subject during the course of the study, whether or not it is related to the device or procedure. A major adverse event was defined as any clinical event which occurred within the first week following the use of the investigational device and was life-threatening; or resulted in permanent impairment of a body function or permanent damage to a body structure; necessitated significant intervention, such as major surgery, to prevent permanent impairment of a body function or permanent damage to a body structure; or required hospitalization or an extended hospital stay.

Twenty-two (22) major adverse events were reported for twenty (20) patients. These events included lower extremity ischemia, cerebral infarct, thrombus (2 events), fractured femur, cerebral emboli, pulmonary embolism, hematoma, pseudoaneurysm (2 events) and AV fistula. Eight patients died during the study. Of the eight deaths, five occurred during the six-month study follow-up period, and all were related to underlying pre-existing conditions.

Major Adverse Events

Of the 250 patients treated with the Blazer II XP Catheter and EPT-1000XP Controller and accessories, twenty-two (22) major adverse events were reported in twenty (20) patients. The major adverse event rate (number of patients with the major adverse events per the number of patients in the study) was 8% (20/250).

A detailed review of each adverse event was conducted. Several patients had adverse events related to pre-existing non-cardiac disease. Several patients had adverse events related to having an invasive procedure but not relating specifically to the investigational device or ablation procedure. The table below details the major Adverse Events (AE) information.

Table 8. Major Adverse Events

<table>
<thead>
<tr>
<th>Days Post Ablation</th>
<th>Adverse Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8 Atrial tachycardia</td>
</tr>
<tr>
<td>2</td>
<td>1 Pacer implant one day post ablation procedure for junctional rhythm*</td>
</tr>
<tr>
<td>3</td>
<td>2 Atrial fib</td>
</tr>
<tr>
<td>4</td>
<td>0 Laryngotracheitis due to traumatic intubation</td>
</tr>
<tr>
<td>5</td>
<td>0 Left buttock intubation, treated with narcotics</td>
</tr>
<tr>
<td>6</td>
<td>3 Gnoihemotma</td>
</tr>
<tr>
<td>7</td>
<td>0 3 Pulmonary embolus*</td>
</tr>
<tr>
<td>8</td>
<td>1 Systemic embolus to legs bilaterally, right popliteal and left tibioepineal</td>
</tr>
<tr>
<td>9</td>
<td>1 Pacemaker implantation due to prolonged CSMRT</td>
</tr>
<tr>
<td>10</td>
<td>8 DVT</td>
</tr>
<tr>
<td>11</td>
<td>1 TIA</td>
</tr>
<tr>
<td>12</td>
<td>2 Right groin hematoma</td>
</tr>
<tr>
<td>13</td>
<td>1 Transaction femoral artery with subsequent AV fistula</td>
</tr>
<tr>
<td>14</td>
<td>1 Femoral AV fistula repair</td>
</tr>
<tr>
<td>15</td>
<td>2 Pseudoaneurysm/hematoma</td>
</tr>
<tr>
<td>16</td>
<td>5 Ablation for left atrial tachycardia CVA, multiple cerebral infarcts</td>
</tr>
<tr>
<td>17</td>
<td>1 Atrial Fib</td>
</tr>
<tr>
<td>18</td>
<td>4 CVA in patient with pre-existing cerebrovascular disease</td>
</tr>
<tr>
<td>19</td>
<td>4 Choleycystis</td>
</tr>
<tr>
<td>20</td>
<td>1 Fever</td>
</tr>
</tbody>
</table>

All the adverse events above can be attributed to the procedure. The adverse events in two patients (1%) could possibly be attributed to the use of the device for a rate of 2/250 or 0.8%. Eight (8) patients died during the course of the study. The deaths were non-temporally related to the ablation procedure. Details regarding patient deaths are summarized in Table 9.
Table 9. Patient Deaths

<table>
<thead>
<tr>
<th>Days Post Ablation</th>
<th>Death Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>345</td>
<td>79 year old man with CHF s/p CABG 1994, collapse at home in shower, in asystolic arrest when ambulance on scene, autopsy showed AMI and cardiac hypertrophy.</td>
</tr>
<tr>
<td>41</td>
<td>51 year old man with dilated cardiomyopathy, sudden collapse at work 53 days post ablation, in fine VF was cardioverted to junctional rhythm without perfusion, degenerated to asystole, no autopsy performed.</td>
</tr>
<tr>
<td>38</td>
<td>71 year old woman with history of total knee replacement developed a pulmonary embolus 10 hours post a successful ablation procedure which was performed without anticoagulation. This large left pulmonary artery embolus was associated with bilateral pleural effusions and a small pericardial effusion. She was treated with heparin and coumadin. She also fell after the ablation procedure, prior to d/c and sustained a periprosthetic left femur fracture, during treatment and recovery she developed MRSA sepsis from a CVP line, and died from complications.</td>
</tr>
<tr>
<td>214</td>
<td>73 year old man s/p MI, hypertensive, COPD. Did not have a successful ablation procedure. He had worsening respiratory symptoms 6 months post ablation, and was admitted to a nursing home under hospice care. Death was thought to be due to pre-existing respiratory disease.</td>
</tr>
<tr>
<td>59</td>
<td>73 year old woman with hypertension CHF, on CPAP at night had abrupt onset of severe SOB, chest pain and cough 60 days post ablation. Taken to ER where she rapidly deteriorated to cardiopulmonary arrest 3 hours after onset. No clear reason for death documented.</td>
</tr>
<tr>
<td>40</td>
<td>52 year old man with history of PVD, CAD M1 1990, end stage cardiomyopathy, cardiogenic shock one month prior to ablation. He underwent a successful right atrial ablation for typical atrial flutter on 6/16/00. He continued to have left atrial tachycardia and underwent a second ablation procedure on 6/21/00 during which he had multiple bilateral infarcts in the posterior cerebellum. His neurological exam improved but he was transferred to hospice care because of ongoing CHF. Cause of death was thought to be due to worsening CHF.</td>
</tr>
<tr>
<td>455</td>
<td>74 year old man developed staphylococcal SBE of the mitral valve more than one year post successful ablation procedure.</td>
</tr>
<tr>
<td>30</td>
<td>48 year old woman died after a complicated elective gastric bypass surgery procedure.</td>
</tr>
</tbody>
</table>

Statistical Analysis

The table below summarizes the safety and effectiveness of the device when compared to the control group OPC for safety, acute success, and long-term success.

Table 10. Comparison of Endpoints Between EPT-1000XP™ Cardiac Ablation System Study and OPC

<table>
<thead>
<tr>
<th>Endpoints</th>
<th>OPC %</th>
<th>One-sided 95% Confidence Bound1</th>
<th>EPT-1000XP Study %</th>
<th>One-sided 95% Confidence Bound1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Success</td>
<td>86%</td>
<td>(235/250)</td>
<td>94%</td>
<td>(20/250)</td>
</tr>
<tr>
<td>Major Complications</td>
<td>3%</td>
<td>(7%</td>
<td>8%</td>
<td>(10%</td>
</tr>
<tr>
<td>Six-month Success</td>
<td>86%</td>
<td>(14/15)</td>
<td>93.4%</td>
<td>(3.9%</td>
</tr>
</tbody>
</table>

1. Exact binomial using a commercially-available software package.

How Supplied

The IntellaNav™ XP Catheter is supplied sterile using an Ethylene Oxide (EO) process.

Additional Equipment Required For Safe Use

Cardiac electrophysiology and cardiac ablation procedures should be performed in a specialized clinical setting equipped with a fluoroscopy unit, radiographic table, physiologic recorder, emergency equipment and instrumentation for gaining vascular access. Ancillary materials required to perform cardiac ablation are as follows:

1. One (1) IntellaNav Ablation Catheter Cable
2. One (1) Rhythmia Connection Box
3. One (1) Maestro 3000™ Cardiac Ablation Controller with (RF) Ablation Pod, or One (1) Maestro 4000™ Cardiac Ablation Controller with (RF) Ablation Pod
4. One (1) 8 French (2.67 mm) hemostatic percutaneous catheter introducer or a long introducer sheath.
5. Two (2) - Dispersive Pads meeting IEC 60061-1/IEC 60061-1-2 requirements for electro-surgical electrodes.

(Refer to corresponding manufacturer’s user manuals for specific material information)

Handling and Storage

Operating Environment

- Ambient Temperature: Uncontrolled
- Relative Humidity: Uncontrolled
- Atmospheric Pressure: 70 kPa to 106 kPa

Transport Environment

- Temperature: -29 °C to 60 °C
- Relative Humidity: Uncontrolled
- Atmospheric Pressure: Uncontrolled

Storage Environment

- Temperature: -29 °C to 60 °C
- Relative Humidity: Uncontrolled
- Atmospheric Pressure: Uncontrolled

IntellaNav XP CATHETER SET UP AND OPERATION INSPECTION PRIOR TO USE

INSPECTION PRIOR TO USE

Carefully inspect the package prior to use for any breach of the sterile barrier or damage to the contents. If the sterile barrier integrity is compromised or the contents damaged, contact your Boston Scientific representative. Check the “Use By” date on the device package. Do not use the device if past the “Use By” date.

Prior to use of the BSC high power Cardiac Ablation System, the individual components including the IntellaNav XP Catheter, the Controller, the Rhythmia Connection Box, Pod, and/or Connect Instrument Cable(s), and Foot Switch should be carefully examined for damage or defects as should all equipment used in the procedure.

Do not use defective equipment.

SETTING UP THE SYSTEM

Refer to the Controller & Accessories Operator’s Manuals for detailed instructions for connecting the system and setting ablation parameters.

Attaching the Dispersive Pads

Read the manufacturer’s manual before installing the Dispersive Pads.

1. Place two Dispersive Pads on the patient on a well-vascularized, convex skin surface that is in close proximity to the ablation site (left upper quadrant of the back is suggested unless the patient’s scapula is especially prominent or patient is extremely thin). Other possible locations are the upper arm or left flank area.
2. Avoid scar tissue, bony prominences, adipose tissue or distal areas from the heart (thigh), or any areas where fluid may pool. Shave, clean, and dry the application site as needed. Check for wrinkles or folds when applying the pad as these decrease conductivity.
3. Install the two Dispersive Pad connectors into the Dispersive Pad receptacles located on the front panels of the Pod.

Figure 2 illustrates the cable configuration for the Catheter, Connection Box, Controller, and Pod.

DIRECTIONS FOR USE

Prior to insertion of the IntellaNav XP Catheter, prepare the entry site according to standard aseptic practices. Size the hemostatic introducer sheath, according to the tip electrode diameter for the cardiac ablation catheter in use.

1. Insert the catheter percutaneously into the appropriate vein by the Seldinger technique using an 8F (2.67 mm) hemostatic introducer sheath and/or a long sheath.
2. Once inside the vessel, the catheter tip can be deflected as necessary to facilitate advancement into the selected heart chamber.
3. Connect the IntellaNav XP Catheter to the Rhythmia Connection Box using the IntellaNav Ablation Catheter Cable. The end of the IntellaNav Ablation Catheter Cable with the red band shall be inserted into the Connection Box. Refer to Figure 2. Ensure that the cable/catheter connection remains dry throughout the procedure. Refer to a Rhythmia Mapping System DPU/IFU and/or Rhythmia Connection Box DPU for catheter connection information via the Connection Box.
4. When the ablation site has been accessed and the tip of the catheter is in contact against the endocardial surface, intracardiac electrogram signals may be obtained. Bipolar electrogram signals can be recorded between the distal tip electrode and any ring electrode, or between any two ring electrodes even during RF ablation.
5. The IntellaNav XP Catheter or a multi-polar catheter can be used to assess bidirectional conduction across the isthmus.
6. When the targeted site has been located, the IntellaNav XP Catheter can be used therapeutically in the “Ablate” mode to deliver RF energy. RF power is delivered to the tissue via the distal tip (ablation) electrode which results in thermal necrosis (ablation) of the arrhythmogenic tissue.
7. Use lower power first when first delivering RF energy; begin by using a low power setting (i.e., 50 W). If the created lesion is unsuccessful or inadequate, incrementally increase the power output with successive ablation attempts to minimize the potential for thrombus formation and/or inadvertent damage to cardiac tissues.
8. Ensure that the ablation parameters are set as instructed in the appropriate BSC high power Controller and Accessories Operator’s Manual.

Note: The Controller automatically adjusts power (up to a maximum of 100 watts), within a user-selected upper power limit, to achieve the desired temperature, in the Temperature Control mode.
9. The IntellaNav™ XP Catheter tip curve can be straightened completely and deflected in the opposite direction against cardiac tissue, facilitating stability during ablation.

Note: The BSC high power Cardiac Ablation System is designed so that the temperature set limit cannot exceed 80 °C in Temperature Control Mode, when used with the IntellaNav XP Catheter.

10. To begin RF power delivery, press the RF POWER CONTROL Button on the Controller’s front panel once or hold the Foot Switch down. The POWER Display shows the RF power delivered to the IntellaNav XP Catheter (in watts).

11. During RF delivery, monitor key parameters and adjust therapy delivery accordingly.

12. If any of the following conditions occur during operation, discontinue RF power delivery and perform corrective action as indicated. If a problem is encountered during the procedure, first ensure that all connections are secure and correct, and then follow the steps in Table 11.

<table>
<thead>
<tr>
<th>Problems</th>
<th>Possible Cause</th>
<th>Corrective Action Procedure</th>
</tr>
</thead>
</table>
| Lack of temperature rise | Inadequate contact between electrode and tissue | 1. Discontinue RF delivery.
2. Adjust Catheter position to improve contact and stability.
3. Reinitiate RF delivery. |
| Low temperature | Electrode not stable on endocardium | 1. Discontinue RF delivery.
2. Adjust Catheter position to improve contact and stability.
3. Reinitiate RF delivery. |
| Fluctuating Temperature | | 1. Discontinue RF delivery.
2. Adjust Catheter position to improve contact and stability.
3. Reinitiate RF delivery. |
| Fluctuating Power | | 1. Discontinue RF delivery immediately to prevent ablation of non-targeted tissue.
2. Tip position should be assessed using fluoroscopic and electrogram information.
3. Reinitiate RF delivery. |
| Sudden drop in temperature | Loss of contact or shift in electrode position | 1. Discontinue RF delivery immediately to prevent ablation of non-targeted tissue.
2. Tip position should be assessed using fluoroscopic and electrogram information.
3. Reinitiate RF delivery. |

CATHETER REMOVAL
1. Prior to removing the catheter, straighten the distal end of the catheter completely.
2. Withdraw the catheter from the vessel.
3. Remove the introducer or long introducer sheath and then follow standard practice for management of the insertion site.

WARRANTY
Boston Scientific Corporation (BSC) warrants that reasonable care has been used in the design and manufacture of this instrument. This warranty is in lieu of and excludes all other warranties not expressly set forth herein, whether express or implied by operation of law or otherwise, including, but not limited to, any implied warranties of merchantability or fitness for a particular purpose. Handling, storage, cleaning and sterilization of this instrument as well as other factors relating to the patient, diagnosis, treatment, surgical procedures and other matters beyond BSC’s control directly affect the instrument and the results obtained from its use. BSC’s obligation under this warranty is limited to the repair or replacement of this instrument and BSC shall not be liable for any incidental or consequential loss, damage or expense directly or indirectly arising from the use of this instrument. BSC neither assumes, nor authorizes any other person to assume for it, any other or additional liability or responsibility in connection with this instrument. BSC assumes no liability with respect to instruments reused, reprocessed or resterilized and makes no warranties, express or implied, including but not limited to merchantability or fitness for a particular purpose, with respect to such instruments.

Valleylab is a trademark of Covidien AG Corporation.

Table 11. Correcting Abnormal Conditions

Figure 1. IntellaNav XP Catheter

Figure 2. System Connections