Evolving Sensor Strategies & Remote Monitoring to Reduce Heart Failure Hospitalization

Jag Singh MD DPhil FHRS

Associate Chief, Cardiology Division
Professor of Medicine, Harvard Medical School
Massachusetts General Hospital, Boston
Deputy Editor, *Journal Am Coll Cardiol: Clinical EP*
Overview

- Background
- Sensors
 - Simple & Sophisticated
 - Need for Device-integrated approach
- Clinical impact of Remote Monitoring on HF
 - Outcomes
 - Monitoring HF progression
The Goal: Stabilize Disease Progression

- Cumulative effect of recurrent acute heart failure events leads to progressive decline in cardiac function

- Sensor strategies and timely intervention may help

Gheorghiade M, et al, AJC 2005
Device Based Heart Failure Management

- **Simple Sensors**
 - Heart rate and derivatives
 - Accelerometers
 - Impedance-based
 - S3
 - Respiratory

- **Sophisticated Sensors**
 - Pressure: left atrial pressure, pulmonary artery pressure, RV dP/dt, etc.
 - Heart Sound: PEA
 - C Output: Doppler
 - Chemicals: PO$_2$, PCO$_2$, pH, electrolytes and glucose
 - Biomarkers: TNF, BNP, etc.

Merchant F, Dec GW and Singh JP. Circulation EP, 2010:3: 357
Putting it all together: Sensing & Intervening

Chronic HF
- Neurohormonal status
- Compliance
- Myocardial risk

Triggers
- Ischemia
- Electrolytes
- Endothelial function
- Arrhythmias

Co-Morbid
- Diabetes
- HT
- COPD
- AF

Sophisticated Sensors
- Hemodynamic Instability
 - LAP
 - PADP
 - RV dp/dt
 - PEA
 - Impedance-based measures
- Neurohormones
- Inflammatory markers
 - CRP
 - IL-6
 - BNP, etc
- Acute vascular changes
 - MR
 - Venous drainage

Device-derived Measures
- Physical Activity
- Heart Rate
- HRV
- Impedance-based measures
- S3
- RR variability
- Arrhythmias

Heart Failure Hospitalization
Left Atrial Pressure Sensor Device

Futility leads to termination of trial

• Homeostasis Study: Safety & Efficacy
• LAPTOP-HF Study (Early termination)- Results at HFSA 2016
• Beat-to-beat hemodynamic assessment
• Engaging the patient: 3 phases
 • Observation, Titration & Dynamic Rx.

Merchant F, Dec GW and Singh JP. Circulation EP, 2010:3: 357
Pulmonary Artery Pressure Monitoring
Stand Alone Sensor

- Catheter-based delivery system
- Implanted PA branch diameter 7-15 mm
- Target range (mmHg):
 - PA systolic: 15-35
 - PA diastolic: 8-20
 - PA mean: 10-25

Survival or Freedom from First HF Hospitalization

29% relative risk reduction

Champion Study, Lancet 2010
Device-integrated Sensors: Prognosticating Failure Hospitalizations

- PARTNERS-HF
- 694 CRT patients followed up for 1 year
- 141 HF hospitalizations
- Device diagnostic criteria when positive, were associated with a 5.5 fold increased risk for HF hospitalization

Whellan DJ et al, JACC 2010: 55: 1803
We still need to learn to use the data……

DOT-HF Study: Proactive intervention with Audible Impedance Alerts

- 335 patients randomized to OptiVol information with audible alerts
- Heart Failure hospitalizations near 2-fold higher in the Access arm versus control arm
- 3-fold increase in outpatient visits
- Role of Impedance measures questionable?

Tiered Risk Stratification
Using Device-based Simple Sensors

- **Clinical risk score**
 - **Contak-Renewal Study & HF-HRV Study**
 - Variables extracted from device were dichotomized with score of 1 for:
 - SDANN < 43
 - mean HR > 74
 - Footprint < 29
 - Physical activity % < 5.
 - Total score = sum of dichotomized variables
 - Low (1)
 - Moderate: 2-3
 - High: 4

Singh JP et al Europace 2010
Further Refinement in Sensor Strategies

MultiSENSE Study (HeartLogic™)

Heart Sounds
Signs of elevated filling pressure (S3)

Thoracic Impedance
Fluid accumulation and pulmonary edema

Respiration
Rapid breathing and reduced tidal volume – shortness of breath

Posture
Increased night elevation angle as indicator of Orthopnea or PND

Activity Response
Physiologic changes as a result of activity – such as signs of dyspnea on exertion

Heart Rate and Arrhythmias
Heart rates as indicator of cardiac status; atrial arrhythmias related to HF status

GOAL: Create a high performing composite indicator of worsening heart failure status
The Multiple Sensor Approach
Appropriate Identification of the HF patient

Multi-sensor changes before a HF Admission
Impedance change only with NO event

Patient A: (True Positive)
Patient B: (False Positive)

Relative Tidal Volume
Thoracic Impedance (RV-Can)

Goal for Multisensor data to be combined into a single alert
Rapid Shallow Breathing = Respiratory Rate/Tidal Volume
Is There a Need for Remote Monitoring?

- Implantation of cardiac electronic devices has substantially increased
- Subsequent monitoring is an integral part of device & patient care
 - Device & patient variables, disease data
- Significant clinical workload
 - Further enhanced around advisories, recalls, ERI etc.
CONNECT Trial
Reducing Time to Clinical Decisions & Health Care Utilization

- RCT
- 1997 patients with ICD / CRT
- In-office vs. remote follow up with automatic alerts
- 15 month follow up

Noteworthy Results
- Clinical time from event to clinical decision was 22 vs. 4.6 days
- Reduction in mean length of stay per CV hospitalization (4 vs. 3.3 days)
- Savings of $1800 / hospitalization

Crossley GH et al J Am Coll Cardiol 2011:57:1181
ALTITUDE Study
Does Remote Follow up Influence Hard Endpoints?

- Significantly increased survival in remotely monitored group by nearly 50%
- Reasons:
 - Earlier notification and intervention
 - Engaged and motivated patients

- 194,000 patients on Boston Scientific Latitude system
- 69,556 on network versus 124,450 with conventional clinic follow up, non-randomized
- Remote transmissions
 - 3-4 times / month
 - Additional clinic visits 2/year

Saxon et al, Circulation 2010;122:2359
Extent of Remote Monitoring & Survival
Graded Impact on Outcome (n= 269,471)

Changing Paradigm within Remote Monitoring

Adapted from AS Desai and LW Stevenson, NEJM 2010; 363: 2364-2367
Summary

• **Where are we now?**
 – Paradigm shift in management of Implantable devices
 – Continuous monitoring permits enhanced care
 – But still no concrete uniform strategy

• **Widespread adoption is inevitable**
 • Evolution in device-derived sensor strategies will enable patient-centric care
 • Clinical outcomes studies underway

• **Where do we need to be?**
 – Uniformity in practice
 – Sensors coupled with remote monitoring integrated into clinical practice, will facilitate personalized medicine
 – Additional creation of self-management strategies for patients
Thank you!
New Device Derived Sensor Measures

Some Data

Variability in Respiratory Rate

Audible + Sub audible S3

Cox regression model of event-free time
p<0.001, HR=4.9 (95% CI: 2.2 - 11)

Cumulative proportion with HF events
Time from end of baseline to first HF event (days)

10%-90% range <= 4
10%-90% range > 4

Siejko K, et al. PACE; Mar 2013